
Previous Article
A soft subspace clustering algorithm with logtransformed distances
 BDIA Home
 This Issue

Next Article
On balancing between optimal and proportional categorical predictions
Why curriculum learning & selfpaced learning work in big/noisy data: A theoretical perspective
1.  Institute for Information and System Sciences and Ministry of, Education Key Lab of Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China, China, China, China 
References:
[1] 
S. Basu and J. Christensen, Teaching Classification Boundaries to Humans,, Proceddings of the 27th AAAI Conference on Artificial Intelligence, (2013). 
[2] 
Y. Bengio, J. Louradour, R. Collobert and J. Westone, Curriculum Learning,, Proceedings of the 26th International Conference on Machine Learning, (2009), 41. doi: 10.1145/1553374.1553380. 
[3] 
C.C. Chang and C.J. Lin, LIBSVM: A library for support vector machines,, ACM Transactions on Intelligent Systems and Technology, 2 (2011), 1. 
[4] 
X. Chen, A. Shrivastava and A. Gupta, NEIL: Extracting visual knowledge from web data,, Proceedings of the IEEE International Conference on Computer Vision, (2013), 1409. doi: 10.1109/ICCV.2013.178. 
[5] 
F. Cucker and S. Smale, On the mathematical foundations of learning,, Bull. Amer. Math. Soc., 39 (2002), 1. doi: 10.1090/S0273097901009235. 
[6] 
F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory Viewpoint,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511618796. 
[7] 
Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm,, Proceedings of the 13th International Conference on Machine Learning, (1996). 
[8] 
L. Jiang, D. Y. Meng, T. Mitamura and A. Hauptman, Easy samples first: Selfpaced reranking for multimedia search,, Proceddings of the ACM International Conference on Multimedia, (2014), 547. doi: 10.1145/2647868.2654918. 
[9] 
L. Jiang, D. Y. Meng, S. Yu, Z. Z. Lan, S. G. Shan and A. Hauptma, Selfpaced Learning with Diversity,, Advances in Nerual Information Processing Systems 27, (2014). 
[10] 
L. Jiang and D. Y. Meng, Q. Zhao, S. G. Shan and A. Hauptman, Selfpaced Curriculum Learning,, Proceddings of the 29th AAAI Conference on Artificial Intelligence, (2015). 
[11] 
F. Khan, X. Zhu and B. Mutlu, How do Humans Teach: On Curriculum Learning and Teaching Dimension,, Advances in Nerual Information Processing Systems 24, (2011). 
[12] 
M. Kumar, B. Packer and D. Koller, Selfpaced Learning for Latent Variable Models,, Advances in Nerual Information Processing Systems 23, (2010). 
[13] 
M. Kumar, H. Turki, D. Preston and D. Koller, Learning specficclass segmentation from diverse data,, Proceedings of the IEEE International Conference on Computer Vision, (2011). 
[14] 
Y. Lee and K. Grauman, Learning the easy things first: Selfpaced visual category discovery,, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2011), 1721. doi: 10.1109/CVPR.2011.5995523. 
[15] 
T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves and J. Welling, NeverEnding Learning,, Proceddings of the 29th AAAI Conference on Artificial Intelligence, (2015). 
[16] 
M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of Machine Learning,, The MIT Press, (2012). 
[17] 
E. Ni and C Ling, Supervised learning with minimal effort,, Advances in Knowledge Discovery and Data Mining, 6119 (2010), 476. doi: 10.1007/9783642136726_45. 
[18] 
J. Supanvcivc and D. Ramana, Selfpaced learning for longterm tracking,, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2013). 
[19] 
Y. Tang, Y. B. Yang and Y. Gao, Selfpaced Dictionary Learning for Image Classification,, Proceddings of the ACM International Conference on Multimedia, (2012), 833. doi: 10.1145/2393347.2396324. 
[20] 
K. Tang, V. Ramanathan, F. Li and D. Koller, Shifting weights: Adapting object detectors from image to video,, Advances in Nerual Information Processing Systems 25, (2012). 
[21] 
V. Vapnik, Statistical Learning Theory,, WileyInterscience, (1998). 
[22] 
S. Yu, L. Jiang, Z. Mao, X. J. Chang, X. Z. Du, C. Gan, Z. Z. Lan, Z. W. Xu, X. C. Li, Y. Cai, A. Kumar, Y. Miao, L. Martin, N. Wolfe, S. C. Xu, H. Li, M. Lin, Z. G. Ma, Y. Yang, D. Y. Meng, S. G. Shan, P. D. Sahin, S. Burger, F. Metze, R. Singh, B. Raj, T. Mitamura, R. Stern and A. Hauptmann, CMUInformedia@ TRECVID 2014 Multimedia Event Detection (MED),, TRECVID Video Retrieval Evaluation Workshop, (2014). 
[23] 
Q. Zhao, D. Y. Meng, L. Jiang, Q. Xie, Z. B. Xu and A. Hauptman, Selfpaced Matrix Factorization,, Proceddings of the 29th AAAI Conference on Artificial Intelligence, (2015). 
show all references
References:
[1] 
S. Basu and J. Christensen, Teaching Classification Boundaries to Humans,, Proceddings of the 27th AAAI Conference on Artificial Intelligence, (2013). 
[2] 
Y. Bengio, J. Louradour, R. Collobert and J. Westone, Curriculum Learning,, Proceedings of the 26th International Conference on Machine Learning, (2009), 41. doi: 10.1145/1553374.1553380. 
[3] 
C.C. Chang and C.J. Lin, LIBSVM: A library for support vector machines,, ACM Transactions on Intelligent Systems and Technology, 2 (2011), 1. 
[4] 
X. Chen, A. Shrivastava and A. Gupta, NEIL: Extracting visual knowledge from web data,, Proceedings of the IEEE International Conference on Computer Vision, (2013), 1409. doi: 10.1109/ICCV.2013.178. 
[5] 
F. Cucker and S. Smale, On the mathematical foundations of learning,, Bull. Amer. Math. Soc., 39 (2002), 1. doi: 10.1090/S0273097901009235. 
[6] 
F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory Viewpoint,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511618796. 
[7] 
Y. Freund and R. E. Schapire, Experiments with a new boosting algorithm,, Proceedings of the 13th International Conference on Machine Learning, (1996). 
[8] 
L. Jiang, D. Y. Meng, T. Mitamura and A. Hauptman, Easy samples first: Selfpaced reranking for multimedia search,, Proceddings of the ACM International Conference on Multimedia, (2014), 547. doi: 10.1145/2647868.2654918. 
[9] 
L. Jiang, D. Y. Meng, S. Yu, Z. Z. Lan, S. G. Shan and A. Hauptma, Selfpaced Learning with Diversity,, Advances in Nerual Information Processing Systems 27, (2014). 
[10] 
L. Jiang and D. Y. Meng, Q. Zhao, S. G. Shan and A. Hauptman, Selfpaced Curriculum Learning,, Proceddings of the 29th AAAI Conference on Artificial Intelligence, (2015). 
[11] 
F. Khan, X. Zhu and B. Mutlu, How do Humans Teach: On Curriculum Learning and Teaching Dimension,, Advances in Nerual Information Processing Systems 24, (2011). 
[12] 
M. Kumar, B. Packer and D. Koller, Selfpaced Learning for Latent Variable Models,, Advances in Nerual Information Processing Systems 23, (2010). 
[13] 
M. Kumar, H. Turki, D. Preston and D. Koller, Learning specficclass segmentation from diverse data,, Proceedings of the IEEE International Conference on Computer Vision, (2011). 
[14] 
Y. Lee and K. Grauman, Learning the easy things first: Selfpaced visual category discovery,, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2011), 1721. doi: 10.1109/CVPR.2011.5995523. 
[15] 
T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves and J. Welling, NeverEnding Learning,, Proceddings of the 29th AAAI Conference on Artificial Intelligence, (2015). 
[16] 
M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of Machine Learning,, The MIT Press, (2012). 
[17] 
E. Ni and C Ling, Supervised learning with minimal effort,, Advances in Knowledge Discovery and Data Mining, 6119 (2010), 476. doi: 10.1007/9783642136726_45. 
[18] 
J. Supanvcivc and D. Ramana, Selfpaced learning for longterm tracking,, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2013). 
[19] 
Y. Tang, Y. B. Yang and Y. Gao, Selfpaced Dictionary Learning for Image Classification,, Proceddings of the ACM International Conference on Multimedia, (2012), 833. doi: 10.1145/2393347.2396324. 
[20] 
K. Tang, V. Ramanathan, F. Li and D. Koller, Shifting weights: Adapting object detectors from image to video,, Advances in Nerual Information Processing Systems 25, (2012). 
[21] 
V. Vapnik, Statistical Learning Theory,, WileyInterscience, (1998). 
[22] 
S. Yu, L. Jiang, Z. Mao, X. J. Chang, X. Z. Du, C. Gan, Z. Z. Lan, Z. W. Xu, X. C. Li, Y. Cai, A. Kumar, Y. Miao, L. Martin, N. Wolfe, S. C. Xu, H. Li, M. Lin, Z. G. Ma, Y. Yang, D. Y. Meng, S. G. Shan, P. D. Sahin, S. Burger, F. Metze, R. Singh, B. Raj, T. Mitamura, R. Stern and A. Hauptmann, CMUInformedia@ TRECVID 2014 Multimedia Event Detection (MED),, TRECVID Video Retrieval Evaluation Workshop, (2014). 
[23] 
Q. Zhao, D. Y. Meng, L. Jiang, Q. Xie, Z. B. Xu and A. Hauptman, Selfpaced Matrix Factorization,, Proceddings of the 29th AAAI Conference on Artificial Intelligence, (2015). 
[1] 
D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898904. doi: 10.3934/proc.2003.2003.898 
[2] 
G. Calafiore, M.C. Campi. A learning theory approach to the construction of predictor models. Conference Publications, 2003, 2003 (Special) : 156166. doi: 10.3934/proc.2003.2003.156 
[3] 
Alan Beggs. Learning in monotone bayesian games. Journal of Dynamics & Games, 2015, 2 (2) : 117140. doi: 10.3934/jdg.2015.2.117 
[4] 
Yangyang Xu, Wotao Yin, Stanley Osher. Learning circulant sensing kernels. Inverse Problems & Imaging, 2014, 8 (3) : 901923. doi: 10.3934/ipi.2014.8.901 
[5] 
Nicolás M. Crisosto, Christopher M. KribsZaleta, Carlos CastilloChávez, Stephen Wirkus. Community resilience in collaborative learning. Discrete & Continuous Dynamical Systems  B, 2010, 14 (1) : 1740. doi: 10.3934/dcdsb.2010.14.17 
[6] 
Minlong Lin, Ke Tang. Selective further learning of hybrid ensemble for class imbalanced increment learning. Big Data & Information Analytics, 2017, 2 (1) : 121. doi: 10.3934/bdia.2017005 
[7] 
Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 0 (0) : 00. doi: 10.3934/mfc.2019008 
[8] 
Yang Wang, Zhengfang Zhou. Source extraction in audio via background learning. Inverse Problems & Imaging, 2013, 7 (1) : 283290. doi: 10.3934/ipi.2013.7.283 
[9] 
Wei Xue, Wensheng Zhang, Gaohang Yu. Least absolute deviations learning of multiple tasks. Journal of Industrial & Management Optimization, 2018, 14 (2) : 719729. doi: 10.3934/jimo.2017071 
[10] 
Miguel A. Dumett, Roberto Cominetti. On the stability of an adaptive learning dynamics in traffic games. Journal of Dynamics & Games, 2018, 5 (4) : 265282. doi: 10.3934/jdg.2018017 
[11] 
Mikhail Langovoy, Akhilesh Gotmare, Martin Jaggi. Unsupervised robust nonparametric learning of hidden community properties. Mathematical Foundations of Computing, 2019, 0 (0) : 00. doi: 10.3934/mfc.2019010 
[12] 
Jiang Xie, Junfu Xu, Celine Nie, Qing Nie. Machine learning of swimming data via wisdom of crowd and regression analysis. Mathematical Biosciences & Engineering, 2017, 14 (2) : 511527. doi: 10.3934/mbe.2017031 
[13] 
TaWei Hung, PingTing Chen. On the optimal replenishment in a finite planning horizon with learning effect of setup costs. Journal of Industrial & Management Optimization, 2010, 6 (2) : 425433. doi: 10.3934/jimo.2010.6.425 
[14] 
Mingbao Cheng, Shuxian Xiao, Guosheng Liu. Singlemachine rescheduling problems with learning effect under disruptions. Journal of Industrial & Management Optimization, 2018, 14 (3) : 967980. doi: 10.3934/jimo.2017085 
[15] 
A. Mittal, N. Hemachandra. Learning algorithms for finite horizon constrained Markov decision processes. Journal of Industrial & Management Optimization, 2007, 3 (3) : 429444. doi: 10.3934/jimo.2007.3.429 
[16] 
Michael K. Ng, ChiPan Tam, Fan Wang. Multiview foreground segmentation via fourth order tensor learning. Inverse Problems & Imaging, 2013, 7 (3) : 885906. doi: 10.3934/ipi.2013.7.885 
[17] 
Marcello Delitala, Tommaso Lorenzi. Recognition and learning in a mathematical model for immune response against cancer. Discrete & Continuous Dynamical Systems  B, 2013, 18 (4) : 891914. doi: 10.3934/dcdsb.2013.18.891 
[18] 
Jian Mao, Qixiao Lin, Jingdong Bian. Application of learning algorithms in smart home IoT system security. Mathematical Foundations of Computing, 2018, 1 (1) : 6376. doi: 10.3934/mfc.2018004 
[19] 
Carlos CastilloGarsow. The role of multiple modeling perspectives in students' learning of exponential growth. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14371453. doi: 10.3934/mbe.2013.10.1437 
[20] 
Aude Hofleitner, Tarek Rabbani, Mohammad Rafiee, Laurent El Ghaoui, Alex Bayen. Learning and estimation applications of an online homotopy algorithm for a generalization of the LASSO. Discrete & Continuous Dynamical Systems  S, 2014, 7 (3) : 503523. doi: 10.3934/dcdss.2014.7.503 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]