January  2016, 1(1): 31-79. doi: 10.3934/bdia.2016.1.31

What's the big deal about big data?

1. 

Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Ontario, Canada M3J 1P3, Canada

Received  July 2015 Revised  August 2015 Published  September 2015

This position paper is based on a major cooperative research and development proposal to form a Big Data Research, Analytics, and Information Network (BRAIN). Challenges presented by Big Data research are introduced and several projects are sketched in four important Big Data research theme areas, the solutions of which will further decision making in these areas of investigation. The four themes are large-scale data analytics and cloud computing, computational biology, health informatics, and interactive content analytics. These theme areas are certainly not inclusive, rather indicative of the wide variety to which Big Data now occupies decision analytics. The importance of training highly qualified personnel (HQP), knowledge mobilization and novelty are discussed.
Citation: Nick Cercone, F'IEEE. What's the big deal about big data?. Big Data & Information Analytics, 2016, 1 (1) : 31-79. doi: 10.3934/bdia.2016.1.31
References:
[1]

T. White, Hadoop: The Definitive Guide,, O'Reilly Media, (2012). Google Scholar

[2]

K. Cukier, Data, data everywhere,, The Economist, (2010). Google Scholar

[3]

A. Jones and B. Kerschberg, What technology-assisted electronic discovery teaches us about the role of humans in technology - Re-humanizing technology-assisted review,, Forbes, (2012). Google Scholar

[4]

A. Watters, The Age of Exabytes: Tools and Approaches for Managing Big Data,, Hewlett-Packard Development Company, (2010). Google Scholar

[5]

Editorial, Community cleverness required,, Nature, 455 (2008). Google Scholar

[6]

O. J. Reichman, M. B. Jones and M. P. Schildhauer, Challenges and opportunities of open data in ecology,, Science, 331 (2011), 703. doi: 10.1126/science.1197962. Google Scholar

[7]

M. N. Garofalakis, J. Gehrke and R. Rastogi, Querying and mining data streams: You only get one look a tutorial,, in: Proc. 2002 ACM SIGMOD Int. Conf. On Management-of Data, (2002). doi: 10.1145/564691.564794. Google Scholar

[8]

H. J. Woo and W. S. Lee, EstMax: Tracing maximal frequent itemsets over online data streams,, in: Proc. ICDM, (2007), 709. doi: 10.1109/ICDM.2007.70. Google Scholar

[9]

Y. Zhu and D. Shasha, Statstream: Statistical monitoring of thousands of data streams in real time,, in: Proc. VLDB, (2002), 358. doi: 10.1016/B978-155860869-6/50039-1. Google Scholar

[10]

H. Li and S. Lee, Mining frequent itemsets over data streams using efficient window sliding techniques,, presented at Expert Syst. Appl., 36 (2009), 1466. doi: 10.1016/j.eswa.2007.11.061. Google Scholar

[11]

Z. Farzanyar, M. Kangavari and N. Cercone, Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model,, Computers & Mathematics with Applications, 64 (2012), 1706. doi: 10.1016/j.camwa.2012.01.045. Google Scholar

[12]

Z. Farzanyar, M. Kangavari and N. Cercone, P2P-FISM: mining (recently) frequent itemsets from distributed data streams over P2P network,, Information Processing Letters, 113 (2013), 793. doi: 10.1016/j.ipl.2013.07.016. Google Scholar

[13]

A. Rajaraman and J. D. Ullman, Mining of Massive Datasets,, Cambridge University Press, (2012). Google Scholar

[14]

B. Gassman and R. Knox, 'Cloud Analytics' Means Many Different Kinds of Opportunity,, Gartner Research, (1386). Google Scholar

[15]

A. Cuzzocrea, I. Song and K. C. Davis, Analytics over large-scale multidimensional data: The big data revolution!,, in Proceedings of the ACM 14th International Workshop on Data Warehousing and OLAP, (2011), 101. doi: 10.1145/2064676.2064695. Google Scholar

[16]

S. Frischbier and I. Petrov, Aspects of data-intensive cloud computing,, in Anonymous, (2010), 57. Google Scholar

[17]

H. Vashishtha, M. Smit and E. Stroulia, Moving text analysis tools to the cloud},, in IEEE Congress on Services, (2010), 107. doi: 10.1109/SERVICES.2010.91. Google Scholar

[18]

K. Doka, D. Tsoumakos and N. Koziris, Efficient updates for a shared nothing analytics platform,, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, 1 (2010), 1. doi: 10.1145/1779599.1779606. Google Scholar

[19]

I. Konstantinou, E. Angelou, D. Tsoumakos and N. Koziris, Distributed indexing of web scale datasets for the cloud,, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, 1 (2010), 1. doi: 10.1145/1779599.1779600. Google Scholar

[20]

M. Shmueli-Scheuer, H. Roitman, D. Carmel, Y. Mass and D. Konopnicki, Extracting user profiles from large scale data,, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, 4 (2010), 1. doi: 10.1145/1779599.1779603. Google Scholar

[21]

K. S. Beyer, V. Ercegovac, R. Krishnamurthy, S. Raghavan, J. Rao, F. Reiss, E. J. Shekita, D. E. Simmen, S. Tata, S. Vaithyanathan and H. Zhu, Towards a scalable enterprise content analytics platform,, IEEE Data Eng.Bull., 32 (2009), 28. Google Scholar

[22]

G. Lee, B. Chun and H. Katz, Heterogeneity-aware resource allocation and scheduling in the cloud,, In Proceedings of the 3rd USENIX conference on Hot topics in cloud computing (HotCloud'11), (2011). Google Scholar

[23]

M. Shtern, B. Simmons, M. Smit and M. Litoiu, Toward an ecosystem for precision sharing of segmented big data,, Submitted to the IEEE Conference on Cloud Computing, (2013), 335. doi: 10.1109/CLOUD.2013.131. Google Scholar

[24]

H. Li and J. Jeng, CCMarketplace: A marketplace model for a hybrid cloud,, in Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative Research, (2010), 174. doi: 10.1145/1923947.1923966. Google Scholar

[25]

M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai and M. Tawarmalani, Cloudward bound: planning for beneficial migration of enterprise applications to the cloud,, SIGCOMM Comput.Commun.Rev., 40 (2010), 243. doi: 10.1145/1851182.1851212. Google Scholar

[26]

C. Baun and M. Kunze, The KOALA cloud management service: A modern approach for cloud infrastructure management,, in Proceedings of the First International Workshop on Cloud Computing Platforms, 1 (2011), 1. doi: 10.1145/1967422.1967423. Google Scholar

[27]

K. Zhang, X. Zhou, Y. Chen, X. Wang and Y. Ruan, Sedic: Privacy-aware data intensive computing on hybrid clouds,, in Proceedings of the 18th ACM Conference on Computer and Communications Security, (2011), 515. doi: 10.1145/2046707.2046767. Google Scholar

[28]

L. Abraham, M. A. Murphy, M. Fenn and S. Goasguen, Self-provisioned hybrid clouds,, in Proceeding of the 7th International Conference on Autonomic Computing, (2010), 161. doi: 10.1145/1809049.1809075. Google Scholar

[29]

H.-P. Company, Enterprise cloud services - compute $|$ HP services, 2011 (Nov 15),, Available: , (). Google Scholar

[30]

Fujitsu, FACT SHEET: Fujitsu hybrid cloud services for windows azure, 2011 (Nov 16), 2011,, Available: , (). Google Scholar

[31]

IBM, A highly scalable, low-touch private cloud which offers near zero downtime, rapid image deployment and automated recovery across heterogeneous platforms - IBM SmartCloud provisioning software,, 2011 Available: , (). Google Scholar

[32]

IBM, IBM infrastructure as a service, 2011., Available: , (). Google Scholar

[33]

A. S. Foundation, Deltacloud $|$ many clouds. one API. no problem. 2011 (Nov 14),, Available: , (). Google Scholar

[34]

A. S. Foundation, Apache libcloud $|$ a unified interface to the cloud. 2011 (Nov 14),, Available: , (). Google Scholar

[35]

jClouds Inc, jClouds. 2011 (Nov 14),, Available: , (). Google Scholar

[36]

D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond and M. Morrow, Blueprint for the intercloud - protocols and formats for cloud computing interoperability,, in Proceedings of the 2009 Fourth International Conference on Internet and Web Applications and Services. Washington, (2009), 328. doi: 10.1109/ICIW.2009.55. Google Scholar

[37]

R. Buyya, R. Ranjan and R. N. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services,, in ICA3PP, 6081 (2010), 13. doi: 10.1007/978-3-642-13119-6_2. Google Scholar

[38]

A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts and P. B. Teregowda, Decision support tools for cloud migration in the enterprise,, in Cloud Computing (CLOUD), (2011), 541. doi: 10.1109/CLOUD.2011.59. Google Scholar

[39]

S.-M. Han, M. M. Hassan, C.-W. Yoon and E.-N. Huh, Efficient service recommendation system for cloud computing market,, in Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, (2009), 839. doi: 10.1145/1655925.1656078. Google Scholar

[40]

E. Mathisen, Security challenges and solutions in cloud computing,, in the proceedings of 5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011), (2011), 208. doi: 10.1109/DEST.2011.5936627. Google Scholar

[41]

L. Tang and T. Li, Discovering Lag Intervals for Temporal Dependencies,, 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-2012), (2012), 633. doi: 10.1145/2339530.2339633. Google Scholar

[42]

L. Zhong and J. Wu, On Modeling Data Mining with Time Granularity,, 2009 International Conference on Computational Intelligence and Natural Computing (CINC '09), (2009). Google Scholar

[43]

P. Viappiani, S. Zilles, H. J. Hamilton and C. Boutilier, Learning complex concepts using crowdsourcing: A bayesian approach,, In Second International Conference on Algorithmic Decision Theory (ADT 2011), 6992 (2011), 277. doi: 10.1007/978-3-642-24873-3_21. Google Scholar

[44]

L. Geng and H. J. Hamilton, Interestingness measures for data mining: A survey,, ACM Comput. Surv., 38 (2006). doi: 10.1145/1132960.1132963. Google Scholar

[45]

L. J. Li and M. Zhang, The strategy of mining association rule based on cloud computing,, International Conference on Business Computing and Global Informatization (BCGIN), (2011), 475. doi: 10.1109/BCGIn.2011.125. Google Scholar

[46]

R. J. Hilderman, H. J. Hamilton and N. Cercone, Data mining in large databases using domain generalization graphs,, J. of Intelligent Information Systems, 13 (1999), 195. Google Scholar

[47]

E. Mancini, U. Villano, M. Rak and R. Torella, A simulation-based framework for autonomic web services,, In 11th International Conference on Parallel and Distributed Systems, (2005), 433. doi: 10.1109/ICPADS.2005.50. Google Scholar

[48]

W. Iqbal, M. Dailey and D. Carrera, SLA-driven adaptive resource management for web applications on a heterogeneous compute cloud,, Cloud Computing, 5391 (2009), 243. doi: 10.1007/978-3-642-10665-1_22. Google Scholar

[49]

B. Simmons, M. Litoiu, D. Ionescu and G. Iszlai, Towards a cloud optimization architecture using strategy-trees,, in Proceedings of The 9th International Information and Telecommunication Technologies Symposium (I2TS 2010), (2010), 13. Google Scholar

[50]

P. Pawluk, B. Simmons, M. Smit, M. Litoiu and S. Mankovski, Introducing STRATOS: A cloud broker service,, in IEEE 5th International Conference on Cloud Computing (CLOUD), (2012), 891. doi: 10.1109/CLOUD.2012.24. Google Scholar

[51]

X. Lin, Survey on Cloud Based Mobile Security and A New Framework for Improvement,, the proceeding of the IEEE International Conference on Information and Automation, (2011). Google Scholar

[52]

J. W. Hong, Monitoring and detecting abnormal behavior in mobile cloud infrastructure,, published in 2012 IEEE Network Operations and Management Symposium, (): 1303. Google Scholar

[53]

I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov and E. Witchel, Airavat: Security and privacy for MapReduce,, in Proceedings of the 7th USENIX conference on Networked systems design and implementation, (2010). Google Scholar

[54]

S Saklikar, Embedding Security and Trust Primitives in Map Reduce,, Presented at RSA Conference China, (2012). Google Scholar

[55]

N. Gehlenborg and S. I. O'Donoghue, et al., Visualization of omics data for systems biology,, Nat Methods, 7 (2010). doi: 10.1038/nmeth.1436. Google Scholar

[56]

G. A. Pavlopoulos and A. L. Wegener, et al., A survey of visualization tools for biological network analysis,, BioData Min, 1 (2008). doi: 10.1186/1756-0381-1-12. Google Scholar

[57]

M. Suderman and M. Hallett, Tools for visually exploring biological networks,, Bioinformatics, 23 (2007), 2651. doi: 10.1093/bioinformatics/btm401. Google Scholar

[58]

D. Merico and D. Gfeller, et al., How to visually interpret biological data using networks,, Nat Biotechnol, 27 (2009), 921. Google Scholar

[59]

M. Ashburner and C. A. Ball, et al., Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium,, Nat Genet, 25 (2000), 25. Google Scholar

[60]

H. Hermjakob and L. Montecchi-Palazzi, et al., The HUPO PSI's molecular interaction format-a community standard for the representation of protein interaction data,, Nat Biotechnol, 22 (2004), 177. doi: 10.1038/nbt926. Google Scholar

[61]

E. Jeong and M. Nagasaki, et al., Conversion from BioPAX to CSO for system dynamics and visualization of biological pathway,, Genome Inform, 18 (2007), 225. doi: 10.1142/9781860949920_0022. Google Scholar

[62]

E. G. Cerami and G. D. Bader, et al., cPath: open source software for collecting, storing, and querying biological pathways,, BMC Bioinformatics, 7 (2006). Google Scholar

[63]

L. Ein-Dor and I. Kela, et al., Outcome signature genes in breast cancer: Is there a unique set?,, Bioinformatics, 21 (2005), 171. doi: 10.1093/bioinformatics/bth469. Google Scholar

[64]

P. C. Boutros and S. K. Lau, et al., Prognostic gene signatures for non-small-cell lung cancer,, Proc Natl Acad Sci USA, 106 (2009), 2824. doi: 10.1073/pnas.0809444106. Google Scholar

[65]

L. Ein-Dor and O. Zuk, et al., Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer,, Proc Natl Acad Sci USA, 103 (2006), 5923. doi: 10.1073/pnas.0601231103. Google Scholar

[66]

S. K. Lau and P. C. Boutros, et al., Three-gene prognostic classifier for early-stage non small-cell lung cancer,, J Clin Oncol, 25 (2007), 5562. doi: 10.1200/JCO.2007.12.0352. Google Scholar

[67]

A. Heifets and I. Jurisica, SCRIPDB: A portal for easy access to syntheses, chemicals and reactions in patents,, Nucleic acids research, 40 (2012). doi: 10.1093/nar/gkr919. Google Scholar

[68]

K. Fortney and W. Xie, et al., NetwoRx: Connecting drugs to networks and phenotypes in Saccharomyces cerevisiae,, Nucleic Acids Research, 41 (2013). doi: 10.1093/nar/gks1106. Google Scholar

[69]

L. H. Chu and B. S. Chen, Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets,, Chapter: Systems Biology for Signaling Networks, (2010), 589. doi: 10.1007/978-1-4419-5797-9_24. Google Scholar

[70]

M. S. Tsao and S. Aviel-Ronen, et al., Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer,, J Clin Oncol, 25 (2007), 5240. doi: 10.1200/JCO.2007.12.6953. Google Scholar

[71]

J. A. Foekens and D. Atkins, et al., Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer,, J Clin Oncol, 24 (2006), 1665. doi: 10.1200/JCO.2005.03.9115. Google Scholar

[72]

M. Buyse and S. Loi, et al., Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer,, J Natl Cancer Inst, 98 (2006), 1183. doi: 10.1093/jnci/djj329. Google Scholar

[73]

D. Spentzos and D. A. Levine, et al., Gene expression signature with independent prognostic significance in epithelial ovarian cancer,, J Clin Oncol, 22 (2004), 4700. doi: 10.1200/JCO.2004.04.070. Google Scholar

[74]

C. M. McKee and D. Xu, et al., Protease nexin 1 inhibits hedgehog signaling in prostate adenocarcinoma,, The Journal of clinical investigation, 122 (2012), 4025. doi: 10.1172/JCI59348. Google Scholar

[75]

P. P. Reis and L. Waldron, et al., A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence,, BMC Cancer, 11 (2011). doi: 10.1186/1471-2407-11-437. Google Scholar

[76]

K. Eppert and K. Takenaka, et al., Stem cell gene expression programs influence clinical outcome in human leukemia,, Nature medicine, 17 (2011), 1086. doi: 10.1038/nm.2415. Google Scholar

[77]

C. Q. Zhu and K. Ding, et al., Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer,, J Clin Oncol, 28 (2010), 4417. doi: 10.1200/JCO.2009.26.4325. Google Scholar

[78]

B. Cox and M. Kotlyar, et al., Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology,, Mol Syst Biol, 5 (2009). doi: 10.1038/msb.2009.37. Google Scholar

[79]

R. Tomasini and K. Tsuchihara, et al., TAp73 knockout shows genomic instability with infertility and tumor suppressor functions,, Genes Dev, 22 (2008), 2677. doi: 10.1101/gad.1695308. Google Scholar

[80]

K. L. Gortzak Gortzak Sodek and A. I. Evangelou, et al., Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT),, Mol Biosyst, 4 (2008), 762. doi: 10.1039/b717542f. Google Scholar

[81]

L. Gortzak-Uzan and A. Ignatchenko, et al., A proteome resource of ovarian cancer ascites: Integrated proteomic and bioinformatic analyses to identify putative biomarkers,, J Proteome Res, 7 (2008), 339. doi: 10.1021/pr0703223. Google Scholar

[82]

G. B. Mills and I. Jurisica, et al., Genomic amplicons target vesicle recycling in breast cancer,, J Clin Invest, 119 (2009), 2171. doi: 10.1172/JCI40256. Google Scholar

[83]

R. Agarwal and I. Jurisica, et al., The emerging role of the RAB25 small GTPase in cancer,, Traffic, 10 (2009), 1561. doi: 10.1111/j.1600-0854.2009.00969.x. Google Scholar

[84]

K. R. Brown and I. Jurisica, Unequal evolutionary conservation of human protein interactions in interologous networks,, Genome Biol, 8 (2007). doi: 10.1186/gb-2007-8-5-r95. Google Scholar

[85]

S. Elschenbroich and V. Ignatchenko, et al., In-depth proteomics of ovarian cancer ascites: Combining shotgun proteomics and selected reaction monitoring mass spectrometry,, Journal of proteome research, 10 (2011), 2286. doi: 10.1021/pr1011087. Google Scholar

[86]

Q. Chang and I. Jurisica, et al., Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer,, Cancer research, 71 (2011), 3110. doi: 10.1158/0008-5472.CAN-10-4049. Google Scholar

[87]

H. Jeong and S. P. Mason, et al., Lethality and centrality in protein networks,, Nature, 411 (2001), 41. Google Scholar

[88]

M. W. Hahn and A. D. Kern, Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks,, Mol Biol Evol, 22 (2005), 803. doi: 10.1093/molbev/msi072. Google Scholar

[89]

S. Maslov and K. Sneppen, Specificity and stability in topology of protein networks,, Science, 296 (2002), 910. doi: 10.1126/science.1065103. Google Scholar

[90]

A. C. Gavin and M. Bosche, et al., Functional organization of the yeast proteome by systematic analysis of protein complexes,, Nature, 415 (2002), 141. doi: 10.1038/415141a. Google Scholar

[91]

S. Wuchty, Topology and weights in a protein domain interaction network-a novel way to predict protein interactions,, BMC Genomics, 7 (2006). Google Scholar

[92]

E. Ravasz and A. L. Somera, et al., Hierarchical organization of modularity in metabolic networks,, Science, 297 (2002), 1551. doi: 10.1126/science.1073374. Google Scholar

[93]

H. Yu and M. Gerstein, Genomic analysis of the hierarchical structure of regulatory networks,, Proc Natl Acad Sci USA, 103 (2006), 14724. doi: 10.1073/pnas.0508637103. Google Scholar

[94]

J. D. Han and N. Bertin, et al., Evidence for dynamically organized modularity in the yeast protein-protein interaction network,, Nature, 430 (2004), 88. Google Scholar

[95]

K. Fortney and M. Kotlyar, et al., Inferring the functions of longevity genes with modular subnetwork biomarkers of Caenorhabditis elegans aging,, Genome Biol, 11 (2010). doi: 10.1186/gb-2010-11-2-r13. Google Scholar

[96]

R. Milo and S. Shen-Orr, et al., Network motifs: Simple building blocks of complex networks,, Science, 298 (2002), 824. doi: 10.1126/science.298.5594.824. Google Scholar

[97]

J. J. Rice and A. Kershenbaum, et al., Lasting impressions: Motifs in protein-protein maps may provide footprints of evolutionary events,, Proc Natl Acad Sci USA, 102 (2005), 3173. doi: 10.1073/pnas.0500130102. Google Scholar

[98]

N. Przulj and D. G. Corneil, et al., Modeling interactome: Scale-free or geometric?,, Bioinformatics, 20 (2004), 3508. doi: 10.1093/bioinformatics/bth436. Google Scholar

[99]

M. Barrios-Rodiles and K. R. Brown, et al., High-throughput mapping of a dynamic signaling network in mammalian cells,, Science, 307 (2005), 1621. doi: 10.1126/science.1105776. Google Scholar

[100]

W. Hu and Z. Feng, et al., A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells,, Cancer Res, 67 (2007), 2757. doi: 10.1158/0008-5472.CAN-06-2656. Google Scholar

[101]

R. Jansen and D. Greenbaum, et al., Relating whole-genome expression data with protein-protein interactions,, Genome Res, 12 (2002), 37. doi: 10.1101/gr.205602. Google Scholar

[102]

T. Kato and Y. Murata, et al., Network-based de-noising improves prediction from microarray data,, BMC Bioinformatics, 7 (2006). doi: 10.1186/1471-2105-7-S1-S4. Google Scholar

[103]

P. F. Jonsson and P. A. Bates, Global topological features of cancer proteins in the human interactome,, Bioinformatics, 22 (2006), 2291. doi: 10.1093/bioinformatics/btl390. Google Scholar

[104]

S. Wachi and K. Yoneda, et al., Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues,, Bioinformatics, 21 (2005), 4205. doi: 10.1093/bioinformatics/bti688. Google Scholar

[105]

A. D. King and N. Przulj, et al., Protein complex prediction with RNSC,, Methods in molecular biology, 804 (2011), 297. doi: 10.1007/978-1-61779-361-5_16. Google Scholar

[106]

N. Przulj and D. G. Corneil, et al., Efficient estimation of graphlet frequency distributions in protein-protein interaction networks,, Bioinformatics, 22 (2006), 974. doi: 10.1093/bioinformatics/btl030. Google Scholar

[107]

T. Ideker and O. Ozier, et al., Discovering regulatory and signalling circuits in molecular interaction networks,, Bioinformatics, 18 (2002). doi: 10.1093/bioinformatics/18.suppl_1.S233. Google Scholar

[108]

H. Y.Chuang and E. Lee, et al., Network-based classification of breast cancer metastasis,, Mol Syst Biol, 3 (2007). Google Scholar

[109]

S. Nacu and R. Critchley-Thorne, et al., Gene expression network analysis and applications to immunology,, Bioinformatics, 23 (2007), 850. doi: 10.1093/bioinformatics/btm019. Google Scholar

[110]

D. Hwang and J. J. Smith, et al., A data integration methodology for systems biology: Experimental verification,, Proc Natl Acad Sci USA, 102 (2005), 17302. doi: 10.1073/pnas.0508649102. Google Scholar

[111]

N. Przulj and D. A. Wigle, et al., Functional topology in a network of protein interactions,, Bioinformatics, 20 (2004), 340. doi: 10.1093/bioinformatics/btg415. Google Scholar

[112]

J. Dong and T. Kislinger, et al., Lung cancer: Developmental networks gone awry?,, Cancer Biol Ther, 8 (2009), 312. doi: 10.4161/cbt.8.4.7522. Google Scholar

[113]

S. K. Burley, A. Joachimiak, G. T. Montelione and I. A. Wilson, Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers,, Structure, 16 (2008), 5. doi: 10.1016/j.str.2007.12.002. Google Scholar

[114]

W. J. Chazin, Evolution of the NIGMS protein structure initiative,, Structure, 16 (2008), 12. doi: 10.1016/j.str.2007.11.002. Google Scholar

[115]

A. M. Edwards and E. A. Edwards, A future for the protein structure initiative,, Structure, 15 (2007), 1525. doi: 10.1016/j.str.2007.10.002. Google Scholar

[116]

J. A. Gerlt, A protein structure (or function?) initiative,, Structure, 15 (2007), 1353. doi: 10.1016/j.str.2007.10.003. Google Scholar

[117]

S. C. Harrison, Comments on the NIGMS PSI,, Structure, 15 (2007), 1344. doi: 10.1016/j.str.2007.10.004. Google Scholar

[118]

W. A. Hendrickson, Impact of structures from the protein structure initiative,, Structure, 15 (2007), 1528. doi: 10.1016/j.str.2007.11.006. Google Scholar

[119]

C. J. Mayo, et al., Benefits of automated crystallization plate tracking, imaging, and analysis,, Structure, 13 (2005), 175. doi: 10.1016/j.str.2004.12.010. Google Scholar

[120]

A. McPherson, Some ill considered comments on the protein structure initiative,, Structure, 15 (2007), 1526. doi: 10.1016/j.str.2007.11.001. Google Scholar

[121]

P. B. Moore, Let's call the whole thing off: Some thoughts on the protein structure initiative,, Structure, 15 (2007), 1350. doi: 10.1016/j.str.2007.10.006. Google Scholar

[122]

J. C. Norvell and J. M. Berg, Update on the protein structure initiative,, Structure, 15 (2007), 1519. doi: 10.1016/j.str.2007.11.004. Google Scholar

[123]

T. A. Steitz, Collecting butterflies and the protein structure initiative: The right questions?,, Structure, 15 (2007), 1523. doi: 10.1016/j.str.2007.11.005. Google Scholar

[124]

I. A. Vakser, PSI has to live and become PCI: Protein complex initiative,, Structure, 16 (2008), 1. doi: 10.1016/j.str.2007.12.005. Google Scholar

[125]

M. Adams, A. Joachimiak, R. Kim, G. T. Montelione and J. Norvell, Meeting review: 2003 NIH protein structure initiative workshop in protein production and crystallization for structural and functional genomics,, J Struct Funct Genomics, 5 (2004), 1. doi: 10.1023/B:JSFG.0000029244.65028.71. Google Scholar

[126]

R. Service, Structural biology. Structural genomics, round 2,, Science, 307 (2005), 1554. doi: 10.1126/science.307.5715.1554. Google Scholar

[127]

J. Moult, Comparative modeling in structural genomics,, Comparative Modeling in Structural Genomics. Structural Proteomics and Its Impact on the Life Sciences, (2008), 121. doi: 10.1142/9789812772053_0005. Google Scholar

[128]

A. Yee, A. Gutmanas and C. H. Arrowsmith, Solution NMR in structural genomics,, Curr Opin Struct Biol, 16 (2006), 611. doi: 10.1016/j.sbi.2006.08.002. Google Scholar

[129]

W. Peti, et al., Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR,, J Struct Funct Genomics, 6 (2005), 259. doi: 10.1007/s10969-005-9000-x. Google Scholar

[130]

R. Page, W. Peti, I. A. Wilson, R. C. Stevens and K. Wuthrich, NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline,, Proc Natl Acad Sci USA, 102 (2005), 1901. doi: 10.1073/pnas.0408490102. Google Scholar

[131]

T. B. Acton, et al., Robotic cloning and protein production platform of the northeast structural genomics consortium,, Methods Enzymol, 394 (2005), 210. doi: 10.1016/S0076-6879(05)94008-1. Google Scholar

[132]

B. W. Segelke, et al., Laboratory scale structural genomics,, J Struct Funct Genomics, 5 (2004), 147. doi: 10.1023/B:JSFG.0000029193.82120.d1. Google Scholar

[133]

C. A. Floudas, Computational methods in protein structure prediction,, Biotechnol Bioeng, 97 (2007), 207. doi: 10.1002/bit.21411. Google Scholar

[134]

J. T. Guo, et al., PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction,, Nucleic Acids Res, 32 (2004). doi: 10.1093/nar/gkh414. Google Scholar

[135]

C. Lambert, N. Leonard, X. De Bolle and E. Depiereux, ESyPred3D: Prediction of proteins 3D structures,, Bioinformatics, 18 (2002), 1250. doi: 10.1093/bioinformatics/18.9.1250. Google Scholar

[136]

R. Srinivasan and G. D. Rose, Ab initio prediction of protein structure using LINUS,, Proteins, 47 (2002), 489. Google Scholar

[137]

G. Helles, A comparative study of the reported performance of ab initio protein structure prediction algorithms,, J R Soc Interface, 5 (2008), 387. doi: 10.1098/rsif.2007.1278. Google Scholar

[138]

A. R. Oganov and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,, J Chem Phys, 124 (2006). doi: 10.1063/1.2210932. Google Scholar

[139]

Y. Zhang, A. Kolinski and J. Skolnick, TOUCHSTONE II: A new approach to ab initio protein structure prediction,, Biophys J, 85 (2003), 1145. doi: 10.1016/S0006-3495(03)74551-2. Google Scholar

[140]

C. Hardin, T. V. Pogorelov and Z. Luthey-Schulten, Ab initio protein structure prediction,, Curr Opin Struct Biol, 12 (2002), 176. doi: 10.1016/S0959-440X(02)00306-8. Google Scholar

[141]

R. Bonneau, et al., Rosetta in CASP4: Progress in ab initio protein structure prediction,, Proteins Suppl, 45 (2001), 119. doi: 10.1002/prot.1170. Google Scholar

[142]

J. M. Aramini, P. Rossi, C. Anklin, R. Xiao and G. T. Montelione, Microgram-scale protein structure determination by NMR,, Nat Methods, 4 (2007), 491. doi: 10.1038/nmeth1051. Google Scholar

[143]

L. Parsons and J. Orban, Structural genomics and the metabolome: Combining computational and NMR methods to identify target ligands,, Curr Opin Drug Discov Devel, 7 (2004), 62. Google Scholar

[144]

D. Staunton, J. Owen and I. D. Campbell, NMR and structural genomics,, Acc Chem Res, 36 (2003), 207. Google Scholar

[145]

R. Powers, Applications of NMR to structure-based drug design in structural genomics,, J Struct Funct Genomics, 2 (2002), 113. Google Scholar

[146]

M. A. Kennedy, G. T. Montelione, C. H. Arrowsmith and J. L. Markley, Role for NMR in structural genomics,, J Struct Funct Genomics, 2 (2002), 155. Google Scholar

[147]

G. T. Montelione, D. Zheng, Y. J. Huang, K. C. Gunsalus and T. Szyperski, Protein NMR spectroscopy in structural genomics,, Nat Struct Biol, 7 (2000), 982. Google Scholar

[148]

S. Radaev, S. Li and P. D. Sun, A survey of protein-protein complex crystallizations,, Acta Crystallogr D Biol Crystallogr, 62 (2006), 605. doi: 10.1107/S0907444906011735. Google Scholar

[149]

I. Schlichting, X-ray crystallography of protein-ligand interactions,, Methods Mol Biol, 305 (2005), 155. doi: 10.1385/1-59259-912-5:155. Google Scholar

[150]

H. Ohishi, et al., The development of crystallization and X-ray crystallography method of long stem DNA,, Nucleic Acids Symp Ser (Oxf), 49 (2005), 67. doi: 10.1093/nass/49.1.67. Google Scholar

[151]

F. Schotte, J. Soman, J.S. Olson, M. Wulff and P. A. Anfinrud, Picosecond time-resolved X-ray crystallography: Probing protein function in real time,, J Struct Biol, 147 (2004), 235. doi: 10.1016/j.jsb.2004.06.009. Google Scholar

[152]

T. L. Blundell and S. Patel, High-throughput X-ray crystallography for drug discovery,, Curr Opin Pharmacol, 4 (2004), 490. Google Scholar

[153]

R. Hui and A. Edwards, High-throughput protein crystallization,, J Struct Biol, 142 (2003), 154. doi: 10.1016/S1047-8477(03)00046-7. Google Scholar

[154]

J. R. Luft and G. T. DeTitta, A method to produce microseed stock for use in the crystallization of biological macromolecules,, Acta Crystallogr D Biol Crystallogr, 55 (1999), 988. doi: 10.1107/S0907444999002085. Google Scholar

[155]

M. Andrec, et al., A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing,, Proteins, 69 (2007), 449. doi: 10.1002/prot.21507. Google Scholar

[156]

S. Kim and T. Szyperski, GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information,, J Am Chem Soc, 125 (2003), 1385. doi: 10.1021/ja028197d. Google Scholar

[157]

D. A. Snyder, et al., Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination,, J Am Chem Soc, 127 (2005), 16505. doi: 10.1021/ja053564h. Google Scholar

[158]

J. Luft, et al., Macromolecular crystallization in a high throughput laboratory - the search phase,, Journal of Crystal Growth, 232 (2001), 591. doi: 10.1016/S0022-0248(01)01206-4. Google Scholar

[159]

N. E. Chayen and E. Saridakis, Protein crystallization for genomics: Towards high-throughput optimization techniques,, Acta Crystallogr D Biol Crystallogr, 58 (2002), 921. doi: 10.1107/S0907444902005322. Google Scholar

[160]

M. Hiraki, et al., Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses,, Acta Crystallogr D Biol Crystallogr, 62 (2006), 1058. doi: 10.1107/S0907444906023821. Google Scholar

[161]

S. L. Morissette, et al., High-throughput crystallization: Polymorphs, salts, co-crystals and solvates of pharmaceutical solids,, Adv Drug Deliv Rev, 56 (2004), 275. doi: 10.1016/j.addr.2003.10.020. Google Scholar

[162]

A. D'Arcy, A. M. Sweeney and A. Haber, Practical aspects of using the microbatch method in screening conditions for protein crystallization,, Methods, 34 (2004), 323. doi: 10.1016/j.ymeth.2004.03.023. Google Scholar

[163]

B. Rupp, Maximum-likelihood crystallization,, J Struct Biol, 142 (2003), 162. doi: 10.1016/S1047-8477(03)00047-9. Google Scholar

[164]

R. Page, et al., Shotgun crystallization strategy for structural genomics: An optimized two-tiered crystallization screen against the Thermotoga maritima proteome,, Acta Crystallogr D Biol Crystallogr, 59 (2003), 1028. doi: 10.1107/S0907444903007790. Google Scholar

[165]

V. Klyushnichenko, Protein crystallization: From HTS to kilogram-scale,, Curr Opin Drug Discov Devel, 6 (2003), 848. Google Scholar

[166]

J. C. Grunlan, A. R. Mehrabi, A. T. Chavira, A. B. Nugent and D. L. Saunders, Method for combinatorial screening of moisture vapor transmission rate,, J Comb Chem, 5 (2003), 362. doi: 10.1021/cc020112h. Google Scholar

[167]

G. Juarez-Martinez, P. Steinmann, A. W. Roszak, N. W. Isaacs and J. M. Cooper, High-throughput screens for postgenomics: Studies of protein crystallization using microsystems technology,, Anal Chefm, 74 (2002), 3505. doi: 10.1021/ac0112519. Google Scholar

[168]

E. H. Snell and A. M. Lauricella, et al., Establishing a training set through the visual analysis of crystallization trials. Part II: Crystal examples,, Acta Crystallogr D Biol Crystallogr, 64 (2008), 1131. doi: 10.1107/S0907444908028059. Google Scholar

[169]

E. H. Snell and J. R. Luft, et al., Establishing a training set through the visual analysis of crystallization trials. Part I: Approximately 150,000 images,, Acta Crystallogr D Biol Crystallogr, 64 (2008), 1123. doi: 10.1107/S0907444908028047. Google Scholar

[170]

M. J. McGuffin and I. Jurisica, Interaction techniques for selecting and manipulating subgraphs in network visualizations,, IEEE Trans Vis Comput Graph, 15 (2009), 937. doi: 10.1109/TVCG.2009.151. Google Scholar

[171]

A. D'Arcy, Crystallizing proteins - a rational approach?,, Acta Crystallogr D Biol Crystallogr, 50 (1994), 469. doi: 10.1107/S0907444993014362. Google Scholar

[172]

A. M. Hassell, T. J. Harrocks, E. H. Dashman and A. Mistry, Two distinct approaches to crystallization results-recording databases,, Acta Crystallogr D Biol Crystallogr, 50 (1994), 459. doi: 10.1107/S0907444993014295. Google Scholar

[173]

D. Hennessy, V. Gopalakrishnan, B. G. Buchanan, J. M. Rosenberg and D. Subramanian, Induction of rules for biological macromolecule crystallization,, Proc Int Conf Intell Syst Mol Biol, 2 (1994), 179. Google Scholar

[174]

D. Hennessy, B. Buchanan, D. Subramanian, P. A. Wilkosz and J. M. Rosenberg, Statistical methods for the objective design of screening procedures for macromolecular crystallization,, Acta Crystallogr D Biol Crystallogr, 56 (2000), 817. doi: 10.1107/S0907444900004261. Google Scholar

[175]

I. Jurisica, et al., High throughput macromolecular crystallization: An application of case-based reasoning and data mining,, in Methods in Macromolecular Crystallography (eds. Johnson, (2000). Google Scholar

[176]

I. Jurisica and J. Glasgow, Extending case-based reasoning by discovering and using image features in IVF,, in ACM Symposium on Applied Computing (SAC 2000), (2000), 52. doi: 10.1145/335603.335693. Google Scholar

[177]

I. Jurisica, et al., Image-feature extraction for protein crystallization: Integrating image analysis and case-based reasoning,, in The Thirteenth Innovative Applications of Artificial Intelligence Conference on Artificial Intelligence (IAAI-2001), (2001). Google Scholar

[178]

I. Jurisica, et al., Improving objectivity and scalability in protein crystallization: Integrating image analysis with knowledge discovery,, IEEE Intelligent Systems Journal, 16 (2001), 26. doi: 10.1109/5254.972075. Google Scholar

[179]

I. Jurisica, et al., Intelligent decision support for protein crystal growth,, IBM Systems Journal, 40 (2001), 394. doi: 10.1147/sj.402.0394. Google Scholar

[180]

G. Spraggon, S. A. Lesley, A. Kreusch and J. P. Priestle, Computational analysis of crystallization trials,, Acta Crystallogr D Biol Crystallogr, 58 (2002), 1915. doi: 10.1107/S0907444902016840. Google Scholar

[181]

C. S. Goh, et al., SPINE 2: A system for collaborative structural proteomics within a federated database framework,, Nucleic Acids Res, 31 (2003), 2833. doi: 10.1093/nar/gkg397. Google Scholar

[182]

M. S. Kimber, et al., Data mining crystallization databases: Knowledge-based approaches to optimize protein crystal screens,, Proteins, 51 (2003), 562. doi: 10.1002/prot.10340. Google Scholar

[183]

B. Rupp and J. Wang, Predictive models for protein crystallization,, Methods, 34 (2004), 390. doi: 10.1016/j.ymeth.2004.03.031. Google Scholar

[184]

C. S. Goh, et al., Mining the structural genomics pipeline: Identification of protein properties that affect high-throughput experimental analysis,, J Mol Biol, 336 (2004), 115. doi: 10.1016/j.jmb.2003.11.053. Google Scholar

[185]

I. Jurisica and J. Glasgow, Application of case-based reasoning in molecular biology,, Artificial Intelligence Magazine, 25 (2004), 85. Google Scholar

[186]

R. Page and R. C. Stevens, Crystallization data mining in structural genomics: Using positive and negative results to optimize protein crystallization screens,, Methods, 34 (2004), 373. doi: 10.1016/j.ymeth.2004.03.026. Google Scholar

[187]

C. Cumbaa and I. Jurisica, Automatic classification and pattern discovery in high-throughput protein crystallization trials,, J Struct Funct Genomics, 6 (2005), 195. doi: 10.1007/s10969-005-5243-9. Google Scholar

[188]

S. Asur, P. Raman, M. E. Otey and S. Parthasarathy, A model-based approach for mining membrane protein crystallization trials,, Bioinformatics, 22 (2006). doi: 10.1093/bioinformatics/btl225. Google Scholar

[189]

I. Jurisica and D. A. Wigle, Knowledge Discovery in Proteomics,, Chapman & Hall/CRC Press, (2006). doi: 10.1201/9781420035162. Google Scholar

[190]

M. Kotlyar and I. Jurisica, Predicting protein-protein interactions by association mining,, Information Systems Frontiers, 8 (2006), 37. doi: 10.1007/s10796-005-6102-8. Google Scholar

[191]

C. A. Cumbaa and I. Jurisica, Protein crystallization analysis on the World Community Grid,, J Struct Funct Genomics, 11 (2010), 61. doi: 10.1007/s10969-009-9076-9. Google Scholar

[192]

C. Pastrello, D. Otasek, K. Fortney, G. Agapito, M. Cannataro, E. Shirdel and I. Jurisica, Visual data mining of biological networks: One size does not fit all,, PLOS Comp Biol, 9 (2013). doi: 10.1371/journal.pcbi.1002833. Google Scholar

[193]

A. Chakravarthy and K. Hasse, Netserf: Using semantic knowledge to find internet information archives,, Proceedings of the 18th ACM SIGIR Conference, (1995), 4. doi: 10.1145/215206.215326. Google Scholar

[194]

J. Callan, Distributed information retrieval,, In Croft W. B., 7 (2000), 127. doi: 10.1007/0-306-47019-5_5. Google Scholar

[195]

J. G. Conrad, X. S. Guo, P. jackson and M. Meziou, Database selection using actual physical and acquired logical collection resources in a massive domain-specific operational environment,, Proc. of the 28th VLDB Conference, (2002), 71. doi: 10.1016/B978-155860869-6/50015-9. Google Scholar

[196]

L. Si and J. Callan, Relevant document distribution estimation method for resource selection,, In Proc. of SIGIR, (2003), 298. doi: 10.1145/860435.860490. Google Scholar

[197]

L. Gravano, H. Garcia-Molina and A. Tomasic, Gloss: Text-source discovery over the internet,, ACM Transactions on Database Systems, 24 (1999), 229. doi: 10.1145/320248.320252. Google Scholar

[198]

P. Ipeirotis and L. Gravano, Distributed search over the hidden web: Hierarchical database sampling and selection,, Proc. of VLDB, (2002), 394. doi: 10.1016/B978-155860869-6/50042-1. Google Scholar

[199]

P. Ipeirotis and L. Gravano, Classification-aware Hidden-web Text Database Selection,, Technical Report CeDER-06-04, (2008), 06. doi: 10.1145/1344411.1344412. Google Scholar

[200]

K. L. Liu, C. Yu, W. Meng, W. S. Wu and N. Rishe, A statistical method for estimating the usefulness of text databases,, IEEE Transactions on Knowledge and Data Engineering, 14 (2002). Google Scholar

[201]

N. Cercone, X. An, J. Li, Z. Gu and A. An, Finding best-evidence for evidence-based best practice recommendations in health care,, Knowledge and Information Systems, 29 (2011), 159. Google Scholar

[202]

P. Pattaraintakorn and N. Cercone, Integrating rough set theory and medical applications,, Applied Mathematics Letters, 21 (2008), 400. doi: 10.1016/j.aml.2007.05.010. Google Scholar

[203]

Q. Wan and A. An, Transitional patterns and their significant milestones,, Proceedings of the 2007 IEEE International Conference on Data Mining (ICDM'07), (2007), 691. doi: 10.1109/ICDM.2007.87. Google Scholar

[204]

Y. Liu, X. Huang, A. An and X. Yu, A Sentiment-Aware Model for Predicting Sales Performance Using Blogs,, Proceedings of the 30th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR'07), (2007), 607. Google Scholar

[205]

X. Huang, M. Wen, A. An and Y. Huang, A Platform for Okapi-Based Contextual Information Retrieval,, Proceedings of the 29th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR'06), (2006). doi: 10.1145/1148170.1148341. Google Scholar

[206]

S. Soderland, Learning information extraction rules for semi-structured and free text,, Machine Learning, 34 (1999). Google Scholar

[207]

M. Califf and R. J. Mooney, Relational learning of pattern-match rules for information extraction,, In Proceedings of the 16th National Conference on AI (AAAI-99), (1999). Google Scholar

[208]

D. Freitag, Multistrategy learning for information extraction,, In Proceedings of the Fifteenth International Conference on Machine Learning, (1998). Google Scholar

[209]

F. Ciravegna, Adaptive information extraction from text by rule induction and generalization,, In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, (2001). Google Scholar

[210]

Z. Gu, Adaptive Information Extraction from Online Documents,, PhD thesis, (2006). Google Scholar

[211]

A. McCallum, D. Freitag and F. Pereira, Maximum entropy Markov models for information extraction and segmentation,, In Proceedings of ICML, (2000). Google Scholar

[212]

David M. Blei, Andrew Y. Ng, M. I. Jordan, Latent Dirichlet allocation,, Journal of Machine Learning Research, 3 (2003), 993. Google Scholar

[213]

B. Liu, Sentiment Analysis and Subjectivity,, N. Indurkhya & F. Damerau, (2010), 1. Google Scholar

[214]

R. Picard, Human-Computer Coupling,, Proceedings of the IEEE, 86 (1998), 1803. doi: 10.1109/5.704286. Google Scholar

[215]

P. Ekman and A. J. Fridlund, Assesment of Facial Behvior In Affective Disorders,, In J. D. Maser (Ed.) Depression and Expressive Behavior, (1987), 37. Google Scholar

[216]

P. Ekman, Universals and cultural differences in facial expressions of emotions,, In J. Cole (ed.), (1972), 207. Google Scholar

[217]

R. S. Lazarus, Emotion and Adaptation,, Oxford University Press, (1991). Google Scholar

[218]

N. S. Shami and K. Ehrlich, Making sense of strangers' expertise from signals in digital artifacts,, Proceeding: CHI '09 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2009), 69. doi: 10.1145/1518701.1518713. Google Scholar

[219]

C. Lee, HCI and aesthetics: The future of user interface design,, , (2007). Google Scholar

[220]

N. Tractinsky and D. Zmiri, Exploring Attributes of Skins as Potential Antecedents of Emotion in HCI,, in Fishwick, (2005). Google Scholar

[221]

E. Tufte, The Visual Display of Quantitative Information,, 2nd ed. Cheshire, (2001). Google Scholar

[222]

C. Reas and B. Fry, Processing: A Programming Handbook for Visual Designers and Artists Cambridge,, Massachusetts: MIT Press, (2007). Google Scholar

[223]

D. Ferrucci and A. Lally, UIMA: An architectural approach to unstructured information processing in the corporate research environment,, Natural Language Engineering, 10 (2004), 327. doi: 10.1017/S1351324904003523. Google Scholar

[224]

S. Bird, NLTK: The Natural Language Toolkit,, Proceedings of the COLING/ACL on Interactive presentation sessions, (2006). Google Scholar

[225]

C. Marrin, Webgl Specification,, Khronos WebGL Working Group, (2011). Google Scholar

[226]

I. Hickson, HTML Canvas 2D Context. W3C Working Draft,, World Wide Web Consortium, (2012). Google Scholar

[227]

A. Salga, D. Hodgin, A. Sobiepanek, S. Downe, M. Medel and C. Leung, Processing. js: Sketching with $<$canvas$>$,, In ACM SIGGRAPH 2011 Talks, (2011). Google Scholar

[228]

M. Whitelaw, Art against information: Case studies in data practice,, In: Murphy, (2006), 1. Google Scholar

[229]

S. Diamond, Many points of light: Visualization and the converging aesthetics of art, design and science,, reprinted 2012, (2012). Google Scholar

[230]

W. S. Cleveland, Visualizing Data. Summit,, NJ: Hobart Press, (1993). Google Scholar

[231]

C. Ware and R. Bobrow, Supporting visual queries on medium-size node-link diagrams,, Information Visualization, 4 (2005), 49. Google Scholar

[232]

S. Greenberg and B. Buxton, Usability evaluation considered harmful (some of the time),, CHI 2008 Proceedings, (2008), 111. doi: 10.1145/1357054.1357074. Google Scholar

[233]

J. Bardzell and J. Bardzell, Interaction criticism: A proposal for a framework for a new discipline of HCI,, CHI 2008 Proceedings, (2008), 2463. doi: 10.1145/1358628.1358703. Google Scholar

[234]

Beck et, al.,, 2001., (). Google Scholar

[235]

C. Spagnuolo, Social Media,, Boulder, (2013). Google Scholar

[236]

P. Wolkerstorfer, M. Tscheligi, R. Sefelin, H. Milchrahm, Z. Hussain, M. Lechner and S. Shahzad, Probing an agile usability process,, CHI 2008 Proceedings, (2008), 2151. doi: 10.1145/1358628.1358648. Google Scholar

[237]

S. Szigeti, F. Chevalier and S. Diamond, A faster horse: Data driven versus user-centred design for data visualization,, Submitted to CHI'13, (2013). Google Scholar

[238]

J. D. Gould and C. H. Lewis, Designing for usability: Key principles and what designers think,, CHI '83 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (1983), 50. doi: 10.1145/800045.801579. Google Scholar

[239]

G. Cockton, Revisiting usability's three key principles,, CHI 2008 Proceedings, (2008), 2473. doi: 10.1145/1358628.1358704. Google Scholar

[240]

, Lee,, 2007., (). Google Scholar

[241]

N. Tractinsky, A few notes on the study of beauty in HCI,, Human-Computer Interaction, 19 (2004), 351. doi: 10.1207/s15327051hci1904_3. Google Scholar

[242]

G. Guia, S. Oliver, S. Diamond and F. Chevalier, Visualizing sentiments in business customer relationships,, ACM, (2012). Google Scholar

[243]

S. Oliver, Guia Gali, F. Chevalier and S. Diamond, Fracturing media paradigms: Online navigation of online news media,, ACM. DIS 2012, (2012). Google Scholar

[244]

M. Sedlmair, P. Isenberg, D. Baur and A. Butz, Evaluating information visualization in large companies: Challenges, experiences and recommendations,, In Proc. BELIV'10, (2010), 79. doi: 10.1145/2110192.2110204. Google Scholar

[245]

S. Diamond, Many points of light: Visualization and the converging aesthetics of art, design and science, reprinted 2012,, in Critical Digital Studies Reader, (2012). Google Scholar

show all references

References:
[1]

T. White, Hadoop: The Definitive Guide,, O'Reilly Media, (2012). Google Scholar

[2]

K. Cukier, Data, data everywhere,, The Economist, (2010). Google Scholar

[3]

A. Jones and B. Kerschberg, What technology-assisted electronic discovery teaches us about the role of humans in technology - Re-humanizing technology-assisted review,, Forbes, (2012). Google Scholar

[4]

A. Watters, The Age of Exabytes: Tools and Approaches for Managing Big Data,, Hewlett-Packard Development Company, (2010). Google Scholar

[5]

Editorial, Community cleverness required,, Nature, 455 (2008). Google Scholar

[6]

O. J. Reichman, M. B. Jones and M. P. Schildhauer, Challenges and opportunities of open data in ecology,, Science, 331 (2011), 703. doi: 10.1126/science.1197962. Google Scholar

[7]

M. N. Garofalakis, J. Gehrke and R. Rastogi, Querying and mining data streams: You only get one look a tutorial,, in: Proc. 2002 ACM SIGMOD Int. Conf. On Management-of Data, (2002). doi: 10.1145/564691.564794. Google Scholar

[8]

H. J. Woo and W. S. Lee, EstMax: Tracing maximal frequent itemsets over online data streams,, in: Proc. ICDM, (2007), 709. doi: 10.1109/ICDM.2007.70. Google Scholar

[9]

Y. Zhu and D. Shasha, Statstream: Statistical monitoring of thousands of data streams in real time,, in: Proc. VLDB, (2002), 358. doi: 10.1016/B978-155860869-6/50039-1. Google Scholar

[10]

H. Li and S. Lee, Mining frequent itemsets over data streams using efficient window sliding techniques,, presented at Expert Syst. Appl., 36 (2009), 1466. doi: 10.1016/j.eswa.2007.11.061. Google Scholar

[11]

Z. Farzanyar, M. Kangavari and N. Cercone, Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model,, Computers & Mathematics with Applications, 64 (2012), 1706. doi: 10.1016/j.camwa.2012.01.045. Google Scholar

[12]

Z. Farzanyar, M. Kangavari and N. Cercone, P2P-FISM: mining (recently) frequent itemsets from distributed data streams over P2P network,, Information Processing Letters, 113 (2013), 793. doi: 10.1016/j.ipl.2013.07.016. Google Scholar

[13]

A. Rajaraman and J. D. Ullman, Mining of Massive Datasets,, Cambridge University Press, (2012). Google Scholar

[14]

B. Gassman and R. Knox, 'Cloud Analytics' Means Many Different Kinds of Opportunity,, Gartner Research, (1386). Google Scholar

[15]

A. Cuzzocrea, I. Song and K. C. Davis, Analytics over large-scale multidimensional data: The big data revolution!,, in Proceedings of the ACM 14th International Workshop on Data Warehousing and OLAP, (2011), 101. doi: 10.1145/2064676.2064695. Google Scholar

[16]

S. Frischbier and I. Petrov, Aspects of data-intensive cloud computing,, in Anonymous, (2010), 57. Google Scholar

[17]

H. Vashishtha, M. Smit and E. Stroulia, Moving text analysis tools to the cloud},, in IEEE Congress on Services, (2010), 107. doi: 10.1109/SERVICES.2010.91. Google Scholar

[18]

K. Doka, D. Tsoumakos and N. Koziris, Efficient updates for a shared nothing analytics platform,, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, 1 (2010), 1. doi: 10.1145/1779599.1779606. Google Scholar

[19]

I. Konstantinou, E. Angelou, D. Tsoumakos and N. Koziris, Distributed indexing of web scale datasets for the cloud,, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, 1 (2010), 1. doi: 10.1145/1779599.1779600. Google Scholar

[20]

M. Shmueli-Scheuer, H. Roitman, D. Carmel, Y. Mass and D. Konopnicki, Extracting user profiles from large scale data,, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, 4 (2010), 1. doi: 10.1145/1779599.1779603. Google Scholar

[21]

K. S. Beyer, V. Ercegovac, R. Krishnamurthy, S. Raghavan, J. Rao, F. Reiss, E. J. Shekita, D. E. Simmen, S. Tata, S. Vaithyanathan and H. Zhu, Towards a scalable enterprise content analytics platform,, IEEE Data Eng.Bull., 32 (2009), 28. Google Scholar

[22]

G. Lee, B. Chun and H. Katz, Heterogeneity-aware resource allocation and scheduling in the cloud,, In Proceedings of the 3rd USENIX conference on Hot topics in cloud computing (HotCloud'11), (2011). Google Scholar

[23]

M. Shtern, B. Simmons, M. Smit and M. Litoiu, Toward an ecosystem for precision sharing of segmented big data,, Submitted to the IEEE Conference on Cloud Computing, (2013), 335. doi: 10.1109/CLOUD.2013.131. Google Scholar

[24]

H. Li and J. Jeng, CCMarketplace: A marketplace model for a hybrid cloud,, in Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative Research, (2010), 174. doi: 10.1145/1923947.1923966. Google Scholar

[25]

M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai and M. Tawarmalani, Cloudward bound: planning for beneficial migration of enterprise applications to the cloud,, SIGCOMM Comput.Commun.Rev., 40 (2010), 243. doi: 10.1145/1851182.1851212. Google Scholar

[26]

C. Baun and M. Kunze, The KOALA cloud management service: A modern approach for cloud infrastructure management,, in Proceedings of the First International Workshop on Cloud Computing Platforms, 1 (2011), 1. doi: 10.1145/1967422.1967423. Google Scholar

[27]

K. Zhang, X. Zhou, Y. Chen, X. Wang and Y. Ruan, Sedic: Privacy-aware data intensive computing on hybrid clouds,, in Proceedings of the 18th ACM Conference on Computer and Communications Security, (2011), 515. doi: 10.1145/2046707.2046767. Google Scholar

[28]

L. Abraham, M. A. Murphy, M. Fenn and S. Goasguen, Self-provisioned hybrid clouds,, in Proceeding of the 7th International Conference on Autonomic Computing, (2010), 161. doi: 10.1145/1809049.1809075. Google Scholar

[29]

H.-P. Company, Enterprise cloud services - compute $|$ HP services, 2011 (Nov 15),, Available: , (). Google Scholar

[30]

Fujitsu, FACT SHEET: Fujitsu hybrid cloud services for windows azure, 2011 (Nov 16), 2011,, Available: , (). Google Scholar

[31]

IBM, A highly scalable, low-touch private cloud which offers near zero downtime, rapid image deployment and automated recovery across heterogeneous platforms - IBM SmartCloud provisioning software,, 2011 Available: , (). Google Scholar

[32]

IBM, IBM infrastructure as a service, 2011., Available: , (). Google Scholar

[33]

A. S. Foundation, Deltacloud $|$ many clouds. one API. no problem. 2011 (Nov 14),, Available: , (). Google Scholar

[34]

A. S. Foundation, Apache libcloud $|$ a unified interface to the cloud. 2011 (Nov 14),, Available: , (). Google Scholar

[35]

jClouds Inc, jClouds. 2011 (Nov 14),, Available: , (). Google Scholar

[36]

D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond and M. Morrow, Blueprint for the intercloud - protocols and formats for cloud computing interoperability,, in Proceedings of the 2009 Fourth International Conference on Internet and Web Applications and Services. Washington, (2009), 328. doi: 10.1109/ICIW.2009.55. Google Scholar

[37]

R. Buyya, R. Ranjan and R. N. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services,, in ICA3PP, 6081 (2010), 13. doi: 10.1007/978-3-642-13119-6_2. Google Scholar

[38]

A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts and P. B. Teregowda, Decision support tools for cloud migration in the enterprise,, in Cloud Computing (CLOUD), (2011), 541. doi: 10.1109/CLOUD.2011.59. Google Scholar

[39]

S.-M. Han, M. M. Hassan, C.-W. Yoon and E.-N. Huh, Efficient service recommendation system for cloud computing market,, in Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, (2009), 839. doi: 10.1145/1655925.1656078. Google Scholar

[40]

E. Mathisen, Security challenges and solutions in cloud computing,, in the proceedings of 5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011), (2011), 208. doi: 10.1109/DEST.2011.5936627. Google Scholar

[41]

L. Tang and T. Li, Discovering Lag Intervals for Temporal Dependencies,, 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-2012), (2012), 633. doi: 10.1145/2339530.2339633. Google Scholar

[42]

L. Zhong and J. Wu, On Modeling Data Mining with Time Granularity,, 2009 International Conference on Computational Intelligence and Natural Computing (CINC '09), (2009). Google Scholar

[43]

P. Viappiani, S. Zilles, H. J. Hamilton and C. Boutilier, Learning complex concepts using crowdsourcing: A bayesian approach,, In Second International Conference on Algorithmic Decision Theory (ADT 2011), 6992 (2011), 277. doi: 10.1007/978-3-642-24873-3_21. Google Scholar

[44]

L. Geng and H. J. Hamilton, Interestingness measures for data mining: A survey,, ACM Comput. Surv., 38 (2006). doi: 10.1145/1132960.1132963. Google Scholar

[45]

L. J. Li and M. Zhang, The strategy of mining association rule based on cloud computing,, International Conference on Business Computing and Global Informatization (BCGIN), (2011), 475. doi: 10.1109/BCGIn.2011.125. Google Scholar

[46]

R. J. Hilderman, H. J. Hamilton and N. Cercone, Data mining in large databases using domain generalization graphs,, J. of Intelligent Information Systems, 13 (1999), 195. Google Scholar

[47]

E. Mancini, U. Villano, M. Rak and R. Torella, A simulation-based framework for autonomic web services,, In 11th International Conference on Parallel and Distributed Systems, (2005), 433. doi: 10.1109/ICPADS.2005.50. Google Scholar

[48]

W. Iqbal, M. Dailey and D. Carrera, SLA-driven adaptive resource management for web applications on a heterogeneous compute cloud,, Cloud Computing, 5391 (2009), 243. doi: 10.1007/978-3-642-10665-1_22. Google Scholar

[49]

B. Simmons, M. Litoiu, D. Ionescu and G. Iszlai, Towards a cloud optimization architecture using strategy-trees,, in Proceedings of The 9th International Information and Telecommunication Technologies Symposium (I2TS 2010), (2010), 13. Google Scholar

[50]

P. Pawluk, B. Simmons, M. Smit, M. Litoiu and S. Mankovski, Introducing STRATOS: A cloud broker service,, in IEEE 5th International Conference on Cloud Computing (CLOUD), (2012), 891. doi: 10.1109/CLOUD.2012.24. Google Scholar

[51]

X. Lin, Survey on Cloud Based Mobile Security and A New Framework for Improvement,, the proceeding of the IEEE International Conference on Information and Automation, (2011). Google Scholar

[52]

J. W. Hong, Monitoring and detecting abnormal behavior in mobile cloud infrastructure,, published in 2012 IEEE Network Operations and Management Symposium, (): 1303. Google Scholar

[53]

I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov and E. Witchel, Airavat: Security and privacy for MapReduce,, in Proceedings of the 7th USENIX conference on Networked systems design and implementation, (2010). Google Scholar

[54]

S Saklikar, Embedding Security and Trust Primitives in Map Reduce,, Presented at RSA Conference China, (2012). Google Scholar

[55]

N. Gehlenborg and S. I. O'Donoghue, et al., Visualization of omics data for systems biology,, Nat Methods, 7 (2010). doi: 10.1038/nmeth.1436. Google Scholar

[56]

G. A. Pavlopoulos and A. L. Wegener, et al., A survey of visualization tools for biological network analysis,, BioData Min, 1 (2008). doi: 10.1186/1756-0381-1-12. Google Scholar

[57]

M. Suderman and M. Hallett, Tools for visually exploring biological networks,, Bioinformatics, 23 (2007), 2651. doi: 10.1093/bioinformatics/btm401. Google Scholar

[58]

D. Merico and D. Gfeller, et al., How to visually interpret biological data using networks,, Nat Biotechnol, 27 (2009), 921. Google Scholar

[59]

M. Ashburner and C. A. Ball, et al., Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium,, Nat Genet, 25 (2000), 25. Google Scholar

[60]

H. Hermjakob and L. Montecchi-Palazzi, et al., The HUPO PSI's molecular interaction format-a community standard for the representation of protein interaction data,, Nat Biotechnol, 22 (2004), 177. doi: 10.1038/nbt926. Google Scholar

[61]

E. Jeong and M. Nagasaki, et al., Conversion from BioPAX to CSO for system dynamics and visualization of biological pathway,, Genome Inform, 18 (2007), 225. doi: 10.1142/9781860949920_0022. Google Scholar

[62]

E. G. Cerami and G. D. Bader, et al., cPath: open source software for collecting, storing, and querying biological pathways,, BMC Bioinformatics, 7 (2006). Google Scholar

[63]

L. Ein-Dor and I. Kela, et al., Outcome signature genes in breast cancer: Is there a unique set?,, Bioinformatics, 21 (2005), 171. doi: 10.1093/bioinformatics/bth469. Google Scholar

[64]

P. C. Boutros and S. K. Lau, et al., Prognostic gene signatures for non-small-cell lung cancer,, Proc Natl Acad Sci USA, 106 (2009), 2824. doi: 10.1073/pnas.0809444106. Google Scholar

[65]

L. Ein-Dor and O. Zuk, et al., Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer,, Proc Natl Acad Sci USA, 103 (2006), 5923. doi: 10.1073/pnas.0601231103. Google Scholar

[66]

S. K. Lau and P. C. Boutros, et al., Three-gene prognostic classifier for early-stage non small-cell lung cancer,, J Clin Oncol, 25 (2007), 5562. doi: 10.1200/JCO.2007.12.0352. Google Scholar

[67]

A. Heifets and I. Jurisica, SCRIPDB: A portal for easy access to syntheses, chemicals and reactions in patents,, Nucleic acids research, 40 (2012). doi: 10.1093/nar/gkr919. Google Scholar

[68]

K. Fortney and W. Xie, et al., NetwoRx: Connecting drugs to networks and phenotypes in Saccharomyces cerevisiae,, Nucleic Acids Research, 41 (2013). doi: 10.1093/nar/gks1106. Google Scholar

[69]

L. H. Chu and B. S. Chen, Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets,, Chapter: Systems Biology for Signaling Networks, (2010), 589. doi: 10.1007/978-1-4419-5797-9_24. Google Scholar

[70]

M. S. Tsao and S. Aviel-Ronen, et al., Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer,, J Clin Oncol, 25 (2007), 5240. doi: 10.1200/JCO.2007.12.6953. Google Scholar

[71]

J. A. Foekens and D. Atkins, et al., Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer,, J Clin Oncol, 24 (2006), 1665. doi: 10.1200/JCO.2005.03.9115. Google Scholar

[72]

M. Buyse and S. Loi, et al., Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer,, J Natl Cancer Inst, 98 (2006), 1183. doi: 10.1093/jnci/djj329. Google Scholar

[73]

D. Spentzos and D. A. Levine, et al., Gene expression signature with independent prognostic significance in epithelial ovarian cancer,, J Clin Oncol, 22 (2004), 4700. doi: 10.1200/JCO.2004.04.070. Google Scholar

[74]

C. M. McKee and D. Xu, et al., Protease nexin 1 inhibits hedgehog signaling in prostate adenocarcinoma,, The Journal of clinical investigation, 122 (2012), 4025. doi: 10.1172/JCI59348. Google Scholar

[75]

P. P. Reis and L. Waldron, et al., A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence,, BMC Cancer, 11 (2011). doi: 10.1186/1471-2407-11-437. Google Scholar

[76]

K. Eppert and K. Takenaka, et al., Stem cell gene expression programs influence clinical outcome in human leukemia,, Nature medicine, 17 (2011), 1086. doi: 10.1038/nm.2415. Google Scholar

[77]

C. Q. Zhu and K. Ding, et al., Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer,, J Clin Oncol, 28 (2010), 4417. doi: 10.1200/JCO.2009.26.4325. Google Scholar

[78]

B. Cox and M. Kotlyar, et al., Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology,, Mol Syst Biol, 5 (2009). doi: 10.1038/msb.2009.37. Google Scholar

[79]

R. Tomasini and K. Tsuchihara, et al., TAp73 knockout shows genomic instability with infertility and tumor suppressor functions,, Genes Dev, 22 (2008), 2677. doi: 10.1101/gad.1695308. Google Scholar

[80]

K. L. Gortzak Gortzak Sodek and A. I. Evangelou, et al., Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT),, Mol Biosyst, 4 (2008), 762. doi: 10.1039/b717542f. Google Scholar

[81]

L. Gortzak-Uzan and A. Ignatchenko, et al., A proteome resource of ovarian cancer ascites: Integrated proteomic and bioinformatic analyses to identify putative biomarkers,, J Proteome Res, 7 (2008), 339. doi: 10.1021/pr0703223. Google Scholar

[82]

G. B. Mills and I. Jurisica, et al., Genomic amplicons target vesicle recycling in breast cancer,, J Clin Invest, 119 (2009), 2171. doi: 10.1172/JCI40256. Google Scholar

[83]

R. Agarwal and I. Jurisica, et al., The emerging role of the RAB25 small GTPase in cancer,, Traffic, 10 (2009), 1561. doi: 10.1111/j.1600-0854.2009.00969.x. Google Scholar

[84]

K. R. Brown and I. Jurisica, Unequal evolutionary conservation of human protein interactions in interologous networks,, Genome Biol, 8 (2007). doi: 10.1186/gb-2007-8-5-r95. Google Scholar

[85]

S. Elschenbroich and V. Ignatchenko, et al., In-depth proteomics of ovarian cancer ascites: Combining shotgun proteomics and selected reaction monitoring mass spectrometry,, Journal of proteome research, 10 (2011), 2286. doi: 10.1021/pr1011087. Google Scholar

[86]

Q. Chang and I. Jurisica, et al., Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer,, Cancer research, 71 (2011), 3110. doi: 10.1158/0008-5472.CAN-10-4049. Google Scholar

[87]

H. Jeong and S. P. Mason, et al., Lethality and centrality in protein networks,, Nature, 411 (2001), 41. Google Scholar

[88]

M. W. Hahn and A. D. Kern, Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks,, Mol Biol Evol, 22 (2005), 803. doi: 10.1093/molbev/msi072. Google Scholar

[89]

S. Maslov and K. Sneppen, Specificity and stability in topology of protein networks,, Science, 296 (2002), 910. doi: 10.1126/science.1065103. Google Scholar

[90]

A. C. Gavin and M. Bosche, et al., Functional organization of the yeast proteome by systematic analysis of protein complexes,, Nature, 415 (2002), 141. doi: 10.1038/415141a. Google Scholar

[91]

S. Wuchty, Topology and weights in a protein domain interaction network-a novel way to predict protein interactions,, BMC Genomics, 7 (2006). Google Scholar

[92]

E. Ravasz and A. L. Somera, et al., Hierarchical organization of modularity in metabolic networks,, Science, 297 (2002), 1551. doi: 10.1126/science.1073374. Google Scholar

[93]

H. Yu and M. Gerstein, Genomic analysis of the hierarchical structure of regulatory networks,, Proc Natl Acad Sci USA, 103 (2006), 14724. doi: 10.1073/pnas.0508637103. Google Scholar

[94]

J. D. Han and N. Bertin, et al., Evidence for dynamically organized modularity in the yeast protein-protein interaction network,, Nature, 430 (2004), 88. Google Scholar

[95]

K. Fortney and M. Kotlyar, et al., Inferring the functions of longevity genes with modular subnetwork biomarkers of Caenorhabditis elegans aging,, Genome Biol, 11 (2010). doi: 10.1186/gb-2010-11-2-r13. Google Scholar

[96]

R. Milo and S. Shen-Orr, et al., Network motifs: Simple building blocks of complex networks,, Science, 298 (2002), 824. doi: 10.1126/science.298.5594.824. Google Scholar

[97]

J. J. Rice and A. Kershenbaum, et al., Lasting impressions: Motifs in protein-protein maps may provide footprints of evolutionary events,, Proc Natl Acad Sci USA, 102 (2005), 3173. doi: 10.1073/pnas.0500130102. Google Scholar

[98]

N. Przulj and D. G. Corneil, et al., Modeling interactome: Scale-free or geometric?,, Bioinformatics, 20 (2004), 3508. doi: 10.1093/bioinformatics/bth436. Google Scholar

[99]

M. Barrios-Rodiles and K. R. Brown, et al., High-throughput mapping of a dynamic signaling network in mammalian cells,, Science, 307 (2005), 1621. doi: 10.1126/science.1105776. Google Scholar

[100]

W. Hu and Z. Feng, et al., A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells,, Cancer Res, 67 (2007), 2757. doi: 10.1158/0008-5472.CAN-06-2656. Google Scholar

[101]

R. Jansen and D. Greenbaum, et al., Relating whole-genome expression data with protein-protein interactions,, Genome Res, 12 (2002), 37. doi: 10.1101/gr.205602. Google Scholar

[102]

T. Kato and Y. Murata, et al., Network-based de-noising improves prediction from microarray data,, BMC Bioinformatics, 7 (2006). doi: 10.1186/1471-2105-7-S1-S4. Google Scholar

[103]

P. F. Jonsson and P. A. Bates, Global topological features of cancer proteins in the human interactome,, Bioinformatics, 22 (2006), 2291. doi: 10.1093/bioinformatics/btl390. Google Scholar

[104]

S. Wachi and K. Yoneda, et al., Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues,, Bioinformatics, 21 (2005), 4205. doi: 10.1093/bioinformatics/bti688. Google Scholar

[105]

A. D. King and N. Przulj, et al., Protein complex prediction with RNSC,, Methods in molecular biology, 804 (2011), 297. doi: 10.1007/978-1-61779-361-5_16. Google Scholar

[106]

N. Przulj and D. G. Corneil, et al., Efficient estimation of graphlet frequency distributions in protein-protein interaction networks,, Bioinformatics, 22 (2006), 974. doi: 10.1093/bioinformatics/btl030. Google Scholar

[107]

T. Ideker and O. Ozier, et al., Discovering regulatory and signalling circuits in molecular interaction networks,, Bioinformatics, 18 (2002). doi: 10.1093/bioinformatics/18.suppl_1.S233. Google Scholar

[108]

H. Y.Chuang and E. Lee, et al., Network-based classification of breast cancer metastasis,, Mol Syst Biol, 3 (2007). Google Scholar

[109]

S. Nacu and R. Critchley-Thorne, et al., Gene expression network analysis and applications to immunology,, Bioinformatics, 23 (2007), 850. doi: 10.1093/bioinformatics/btm019. Google Scholar

[110]

D. Hwang and J. J. Smith, et al., A data integration methodology for systems biology: Experimental verification,, Proc Natl Acad Sci USA, 102 (2005), 17302. doi: 10.1073/pnas.0508649102. Google Scholar

[111]

N. Przulj and D. A. Wigle, et al., Functional topology in a network of protein interactions,, Bioinformatics, 20 (2004), 340. doi: 10.1093/bioinformatics/btg415. Google Scholar

[112]

J. Dong and T. Kislinger, et al., Lung cancer: Developmental networks gone awry?,, Cancer Biol Ther, 8 (2009), 312. doi: 10.4161/cbt.8.4.7522. Google Scholar

[113]

S. K. Burley, A. Joachimiak, G. T. Montelione and I. A. Wilson, Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers,, Structure, 16 (2008), 5. doi: 10.1016/j.str.2007.12.002. Google Scholar

[114]

W. J. Chazin, Evolution of the NIGMS protein structure initiative,, Structure, 16 (2008), 12. doi: 10.1016/j.str.2007.11.002. Google Scholar

[115]

A. M. Edwards and E. A. Edwards, A future for the protein structure initiative,, Structure, 15 (2007), 1525. doi: 10.1016/j.str.2007.10.002. Google Scholar

[116]

J. A. Gerlt, A protein structure (or function?) initiative,, Structure, 15 (2007), 1353. doi: 10.1016/j.str.2007.10.003. Google Scholar

[117]

S. C. Harrison, Comments on the NIGMS PSI,, Structure, 15 (2007), 1344. doi: 10.1016/j.str.2007.10.004. Google Scholar

[118]

W. A. Hendrickson, Impact of structures from the protein structure initiative,, Structure, 15 (2007), 1528. doi: 10.1016/j.str.2007.11.006. Google Scholar

[119]

C. J. Mayo, et al., Benefits of automated crystallization plate tracking, imaging, and analysis,, Structure, 13 (2005), 175. doi: 10.1016/j.str.2004.12.010. Google Scholar

[120]

A. McPherson, Some ill considered comments on the protein structure initiative,, Structure, 15 (2007), 1526. doi: 10.1016/j.str.2007.11.001. Google Scholar

[121]

P. B. Moore, Let's call the whole thing off: Some thoughts on the protein structure initiative,, Structure, 15 (2007), 1350. doi: 10.1016/j.str.2007.10.006. Google Scholar

[122]

J. C. Norvell and J. M. Berg, Update on the protein structure initiative,, Structure, 15 (2007), 1519. doi: 10.1016/j.str.2007.11.004. Google Scholar

[123]

T. A. Steitz, Collecting butterflies and the protein structure initiative: The right questions?,, Structure, 15 (2007), 1523. doi: 10.1016/j.str.2007.11.005. Google Scholar

[124]

I. A. Vakser, PSI has to live and become PCI: Protein complex initiative,, Structure, 16 (2008), 1. doi: 10.1016/j.str.2007.12.005. Google Scholar

[125]

M. Adams, A. Joachimiak, R. Kim, G. T. Montelione and J. Norvell, Meeting review: 2003 NIH protein structure initiative workshop in protein production and crystallization for structural and functional genomics,, J Struct Funct Genomics, 5 (2004), 1. doi: 10.1023/B:JSFG.0000029244.65028.71. Google Scholar

[126]

R. Service, Structural biology. Structural genomics, round 2,, Science, 307 (2005), 1554. doi: 10.1126/science.307.5715.1554. Google Scholar

[127]

J. Moult, Comparative modeling in structural genomics,, Comparative Modeling in Structural Genomics. Structural Proteomics and Its Impact on the Life Sciences, (2008), 121. doi: 10.1142/9789812772053_0005. Google Scholar

[128]

A. Yee, A. Gutmanas and C. H. Arrowsmith, Solution NMR in structural genomics,, Curr Opin Struct Biol, 16 (2006), 611. doi: 10.1016/j.sbi.2006.08.002. Google Scholar

[129]

W. Peti, et al., Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR,, J Struct Funct Genomics, 6 (2005), 259. doi: 10.1007/s10969-005-9000-x. Google Scholar

[130]

R. Page, W. Peti, I. A. Wilson, R. C. Stevens and K. Wuthrich, NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline,, Proc Natl Acad Sci USA, 102 (2005), 1901. doi: 10.1073/pnas.0408490102. Google Scholar

[131]

T. B. Acton, et al., Robotic cloning and protein production platform of the northeast structural genomics consortium,, Methods Enzymol, 394 (2005), 210. doi: 10.1016/S0076-6879(05)94008-1. Google Scholar

[132]

B. W. Segelke, et al., Laboratory scale structural genomics,, J Struct Funct Genomics, 5 (2004), 147. doi: 10.1023/B:JSFG.0000029193.82120.d1. Google Scholar

[133]

C. A. Floudas, Computational methods in protein structure prediction,, Biotechnol Bioeng, 97 (2007), 207. doi: 10.1002/bit.21411. Google Scholar

[134]

J. T. Guo, et al., PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction,, Nucleic Acids Res, 32 (2004). doi: 10.1093/nar/gkh414. Google Scholar

[135]

C. Lambert, N. Leonard, X. De Bolle and E. Depiereux, ESyPred3D: Prediction of proteins 3D structures,, Bioinformatics, 18 (2002), 1250. doi: 10.1093/bioinformatics/18.9.1250. Google Scholar

[136]

R. Srinivasan and G. D. Rose, Ab initio prediction of protein structure using LINUS,, Proteins, 47 (2002), 489. Google Scholar

[137]

G. Helles, A comparative study of the reported performance of ab initio protein structure prediction algorithms,, J R Soc Interface, 5 (2008), 387. doi: 10.1098/rsif.2007.1278. Google Scholar

[138]

A. R. Oganov and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,, J Chem Phys, 124 (2006). doi: 10.1063/1.2210932. Google Scholar

[139]

Y. Zhang, A. Kolinski and J. Skolnick, TOUCHSTONE II: A new approach to ab initio protein structure prediction,, Biophys J, 85 (2003), 1145. doi: 10.1016/S0006-3495(03)74551-2. Google Scholar

[140]

C. Hardin, T. V. Pogorelov and Z. Luthey-Schulten, Ab initio protein structure prediction,, Curr Opin Struct Biol, 12 (2002), 176. doi: 10.1016/S0959-440X(02)00306-8. Google Scholar

[141]

R. Bonneau, et al., Rosetta in CASP4: Progress in ab initio protein structure prediction,, Proteins Suppl, 45 (2001), 119. doi: 10.1002/prot.1170. Google Scholar

[142]

J. M. Aramini, P. Rossi, C. Anklin, R. Xiao and G. T. Montelione, Microgram-scale protein structure determination by NMR,, Nat Methods, 4 (2007), 491. doi: 10.1038/nmeth1051. Google Scholar

[143]

L. Parsons and J. Orban, Structural genomics and the metabolome: Combining computational and NMR methods to identify target ligands,, Curr Opin Drug Discov Devel, 7 (2004), 62. Google Scholar

[144]

D. Staunton, J. Owen and I. D. Campbell, NMR and structural genomics,, Acc Chem Res, 36 (2003), 207. Google Scholar

[145]

R. Powers, Applications of NMR to structure-based drug design in structural genomics,, J Struct Funct Genomics, 2 (2002), 113. Google Scholar

[146]

M. A. Kennedy, G. T. Montelione, C. H. Arrowsmith and J. L. Markley, Role for NMR in structural genomics,, J Struct Funct Genomics, 2 (2002), 155. Google Scholar

[147]

G. T. Montelione, D. Zheng, Y. J. Huang, K. C. Gunsalus and T. Szyperski, Protein NMR spectroscopy in structural genomics,, Nat Struct Biol, 7 (2000), 982. Google Scholar

[148]

S. Radaev, S. Li and P. D. Sun, A survey of protein-protein complex crystallizations,, Acta Crystallogr D Biol Crystallogr, 62 (2006), 605. doi: 10.1107/S0907444906011735. Google Scholar

[149]

I. Schlichting, X-ray crystallography of protein-ligand interactions,, Methods Mol Biol, 305 (2005), 155. doi: 10.1385/1-59259-912-5:155. Google Scholar

[150]

H. Ohishi, et al., The development of crystallization and X-ray crystallography method of long stem DNA,, Nucleic Acids Symp Ser (Oxf), 49 (2005), 67. doi: 10.1093/nass/49.1.67. Google Scholar

[151]

F. Schotte, J. Soman, J.S. Olson, M. Wulff and P. A. Anfinrud, Picosecond time-resolved X-ray crystallography: Probing protein function in real time,, J Struct Biol, 147 (2004), 235. doi: 10.1016/j.jsb.2004.06.009. Google Scholar

[152]

T. L. Blundell and S. Patel, High-throughput X-ray crystallography for drug discovery,, Curr Opin Pharmacol, 4 (2004), 490. Google Scholar

[153]

R. Hui and A. Edwards, High-throughput protein crystallization,, J Struct Biol, 142 (2003), 154. doi: 10.1016/S1047-8477(03)00046-7. Google Scholar

[154]

J. R. Luft and G. T. DeTitta, A method to produce microseed stock for use in the crystallization of biological macromolecules,, Acta Crystallogr D Biol Crystallogr, 55 (1999), 988. doi: 10.1107/S0907444999002085. Google Scholar

[155]

M. Andrec, et al., A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing,, Proteins, 69 (2007), 449. doi: 10.1002/prot.21507. Google Scholar

[156]

S. Kim and T. Szyperski, GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information,, J Am Chem Soc, 125 (2003), 1385. doi: 10.1021/ja028197d. Google Scholar

[157]

D. A. Snyder, et al., Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination,, J Am Chem Soc, 127 (2005), 16505. doi: 10.1021/ja053564h. Google Scholar

[158]

J. Luft, et al., Macromolecular crystallization in a high throughput laboratory - the search phase,, Journal of Crystal Growth, 232 (2001), 591. doi: 10.1016/S0022-0248(01)01206-4. Google Scholar

[159]

N. E. Chayen and E. Saridakis, Protein crystallization for genomics: Towards high-throughput optimization techniques,, Acta Crystallogr D Biol Crystallogr, 58 (2002), 921. doi: 10.1107/S0907444902005322. Google Scholar

[160]

M. Hiraki, et al., Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses,, Acta Crystallogr D Biol Crystallogr, 62 (2006), 1058. doi: 10.1107/S0907444906023821. Google Scholar

[161]

S. L. Morissette, et al., High-throughput crystallization: Polymorphs, salts, co-crystals and solvates of pharmaceutical solids,, Adv Drug Deliv Rev, 56 (2004), 275. doi: 10.1016/j.addr.2003.10.020. Google Scholar

[162]

A. D'Arcy, A. M. Sweeney and A. Haber, Practical aspects of using the microbatch method in screening conditions for protein crystallization,, Methods, 34 (2004), 323. doi: 10.1016/j.ymeth.2004.03.023. Google Scholar

[163]

B. Rupp, Maximum-likelihood crystallization,, J Struct Biol, 142 (2003), 162. doi: 10.1016/S1047-8477(03)00047-9. Google Scholar

[164]

R. Page, et al., Shotgun crystallization strategy for structural genomics: An optimized two-tiered crystallization screen against the Thermotoga maritima proteome,, Acta Crystallogr D Biol Crystallogr, 59 (2003), 1028. doi: 10.1107/S0907444903007790. Google Scholar

[165]

V. Klyushnichenko, Protein crystallization: From HTS to kilogram-scale,, Curr Opin Drug Discov Devel, 6 (2003), 848. Google Scholar

[166]

J. C. Grunlan, A. R. Mehrabi, A. T. Chavira, A. B. Nugent and D. L. Saunders, Method for combinatorial screening of moisture vapor transmission rate,, J Comb Chem, 5 (2003), 362. doi: 10.1021/cc020112h. Google Scholar

[167]

G. Juarez-Martinez, P. Steinmann, A. W. Roszak, N. W. Isaacs and J. M. Cooper, High-throughput screens for postgenomics: Studies of protein crystallization using microsystems technology,, Anal Chefm, 74 (2002), 3505. doi: 10.1021/ac0112519. Google Scholar

[168]

E. H. Snell and A. M. Lauricella, et al., Establishing a training set through the visual analysis of crystallization trials. Part II: Crystal examples,, Acta Crystallogr D Biol Crystallogr, 64 (2008), 1131. doi: 10.1107/S0907444908028059. Google Scholar

[169]

E. H. Snell and J. R. Luft, et al., Establishing a training set through the visual analysis of crystallization trials. Part I: Approximately 150,000 images,, Acta Crystallogr D Biol Crystallogr, 64 (2008), 1123. doi: 10.1107/S0907444908028047. Google Scholar

[170]

M. J. McGuffin and I. Jurisica, Interaction techniques for selecting and manipulating subgraphs in network visualizations,, IEEE Trans Vis Comput Graph, 15 (2009), 937. doi: 10.1109/TVCG.2009.151. Google Scholar

[171]

A. D'Arcy, Crystallizing proteins - a rational approach?,, Acta Crystallogr D Biol Crystallogr, 50 (1994), 469. doi: 10.1107/S0907444993014362. Google Scholar

[172]

A. M. Hassell, T. J. Harrocks, E. H. Dashman and A. Mistry, Two distinct approaches to crystallization results-recording databases,, Acta Crystallogr D Biol Crystallogr, 50 (1994), 459. doi: 10.1107/S0907444993014295. Google Scholar

[173]

D. Hennessy, V. Gopalakrishnan, B. G. Buchanan, J. M. Rosenberg and D. Subramanian, Induction of rules for biological macromolecule crystallization,, Proc Int Conf Intell Syst Mol Biol, 2 (1994), 179. Google Scholar

[174]

D. Hennessy, B. Buchanan, D. Subramanian, P. A. Wilkosz and J. M. Rosenberg, Statistical methods for the objective design of screening procedures for macromolecular crystallization,, Acta Crystallogr D Biol Crystallogr, 56 (2000), 817. doi: 10.1107/S0907444900004261. Google Scholar

[175]

I. Jurisica, et al., High throughput macromolecular crystallization: An application of case-based reasoning and data mining,, in Methods in Macromolecular Crystallography (eds. Johnson, (2000). Google Scholar

[176]

I. Jurisica and J. Glasgow, Extending case-based reasoning by discovering and using image features in IVF,, in ACM Symposium on Applied Computing (SAC 2000), (2000), 52. doi: 10.1145/335603.335693. Google Scholar

[177]

I. Jurisica, et al., Image-feature extraction for protein crystallization: Integrating image analysis and case-based reasoning,, in The Thirteenth Innovative Applications of Artificial Intelligence Conference on Artificial Intelligence (IAAI-2001), (2001). Google Scholar

[178]

I. Jurisica, et al., Improving objectivity and scalability in protein crystallization: Integrating image analysis with knowledge discovery,, IEEE Intelligent Systems Journal, 16 (2001), 26. doi: 10.1109/5254.972075. Google Scholar

[179]

I. Jurisica, et al., Intelligent decision support for protein crystal growth,, IBM Systems Journal, 40 (2001), 394. doi: 10.1147/sj.402.0394. Google Scholar

[180]

G. Spraggon, S. A. Lesley, A. Kreusch and J. P. Priestle, Computational analysis of crystallization trials,, Acta Crystallogr D Biol Crystallogr, 58 (2002), 1915. doi: 10.1107/S0907444902016840. Google Scholar

[181]

C. S. Goh, et al., SPINE 2: A system for collaborative structural proteomics within a federated database framework,, Nucleic Acids Res, 31 (2003), 2833. doi: 10.1093/nar/gkg397. Google Scholar

[182]

M. S. Kimber, et al., Data mining crystallization databases: Knowledge-based approaches to optimize protein crystal screens,, Proteins, 51 (2003), 562. doi: 10.1002/prot.10340. Google Scholar

[183]

B. Rupp and J. Wang, Predictive models for protein crystallization,, Methods, 34 (2004), 390. doi: 10.1016/j.ymeth.2004.03.031. Google Scholar

[184]

C. S. Goh, et al., Mining the structural genomics pipeline: Identification of protein properties that affect high-throughput experimental analysis,, J Mol Biol, 336 (2004), 115. doi: 10.1016/j.jmb.2003.11.053. Google Scholar

[185]

I. Jurisica and J. Glasgow, Application of case-based reasoning in molecular biology,, Artificial Intelligence Magazine, 25 (2004), 85. Google Scholar

[186]

R. Page and R. C. Stevens, Crystallization data mining in structural genomics: Using positive and negative results to optimize protein crystallization screens,, Methods, 34 (2004), 373. doi: 10.1016/j.ymeth.2004.03.026. Google Scholar

[187]

C. Cumbaa and I. Jurisica, Automatic classification and pattern discovery in high-throughput protein crystallization trials,, J Struct Funct Genomics, 6 (2005), 195. doi: 10.1007/s10969-005-5243-9. Google Scholar

[188]

S. Asur, P. Raman, M. E. Otey and S. Parthasarathy, A model-based approach for mining membrane protein crystallization trials,, Bioinformatics, 22 (2006). doi: 10.1093/bioinformatics/btl225. Google Scholar

[189]

I. Jurisica and D. A. Wigle, Knowledge Discovery in Proteomics,, Chapman & Hall/CRC Press, (2006). doi: 10.1201/9781420035162. Google Scholar

[190]

M. Kotlyar and I. Jurisica, Predicting protein-protein interactions by association mining,, Information Systems Frontiers, 8 (2006), 37. doi: 10.1007/s10796-005-6102-8. Google Scholar

[191]

C. A. Cumbaa and I. Jurisica, Protein crystallization analysis on the World Community Grid,, J Struct Funct Genomics, 11 (2010), 61. doi: 10.1007/s10969-009-9076-9. Google Scholar

[192]

C. Pastrello, D. Otasek, K. Fortney, G. Agapito, M. Cannataro, E. Shirdel and I. Jurisica, Visual data mining of biological networks: One size does not fit all,, PLOS Comp Biol, 9 (2013). doi: 10.1371/journal.pcbi.1002833. Google Scholar

[193]

A. Chakravarthy and K. Hasse, Netserf: Using semantic knowledge to find internet information archives,, Proceedings of the 18th ACM SIGIR Conference, (1995), 4. doi: 10.1145/215206.215326. Google Scholar

[194]

J. Callan, Distributed information retrieval,, In Croft W. B., 7 (2000), 127. doi: 10.1007/0-306-47019-5_5. Google Scholar

[195]

J. G. Conrad, X. S. Guo, P. jackson and M. Meziou, Database selection using actual physical and acquired logical collection resources in a massive domain-specific operational environment,, Proc. of the 28th VLDB Conference, (2002), 71. doi: 10.1016/B978-155860869-6/50015-9. Google Scholar

[196]

L. Si and J. Callan, Relevant document distribution estimation method for resource selection,, In Proc. of SIGIR, (2003), 298. doi: 10.1145/860435.860490. Google Scholar

[197]

L. Gravano, H. Garcia-Molina and A. Tomasic, Gloss: Text-source discovery over the internet,, ACM Transactions on Database Systems, 24 (1999), 229. doi: 10.1145/320248.320252. Google Scholar

[198]

P. Ipeirotis and L. Gravano, Distributed search over the hidden web: Hierarchical database sampling and selection,, Proc. of VLDB, (2002), 394. doi: 10.1016/B978-155860869-6/50042-1. Google Scholar

[199]

P. Ipeirotis and L. Gravano, Classification-aware Hidden-web Text Database Selection,, Technical Report CeDER-06-04, (2008), 06. doi: 10.1145/1344411.1344412. Google Scholar

[200]

K. L. Liu, C. Yu, W. Meng, W. S. Wu and N. Rishe, A statistical method for estimating the usefulness of text databases,, IEEE Transactions on Knowledge and Data Engineering, 14 (2002). Google Scholar

[201]

N. Cercone, X. An, J. Li, Z. Gu and A. An, Finding best-evidence for evidence-based best practice recommendations in health care,, Knowledge and Information Systems, 29 (2011), 159. Google Scholar

[202]

P. Pattaraintakorn and N. Cercone, Integrating rough set theory and medical applications,, Applied Mathematics Letters, 21 (2008), 400. doi: 10.1016/j.aml.2007.05.010. Google Scholar

[203]

Q. Wan and A. An, Transitional patterns and their significant milestones,, Proceedings of the 2007 IEEE International Conference on Data Mining (ICDM'07), (2007), 691. doi: 10.1109/ICDM.2007.87. Google Scholar

[204]

Y. Liu, X. Huang, A. An and X. Yu, A Sentiment-Aware Model for Predicting Sales Performance Using Blogs,, Proceedings of the 30th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR'07), (2007), 607. Google Scholar

[205]

X. Huang, M. Wen, A. An and Y. Huang, A Platform for Okapi-Based Contextual Information Retrieval,, Proceedings of the 29th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR'06), (2006). doi: 10.1145/1148170.1148341. Google Scholar

[206]

S. Soderland, Learning information extraction rules for semi-structured and free text,, Machine Learning, 34 (1999). Google Scholar

[207]

M. Califf and R. J. Mooney, Relational learning of pattern-match rules for information extraction,, In Proceedings of the 16th National Conference on AI (AAAI-99), (1999). Google Scholar

[208]

D. Freitag, Multistrategy learning for information extraction,, In Proceedings of the Fifteenth International Conference on Machine Learning, (1998). Google Scholar

[209]

F. Ciravegna, Adaptive information extraction from text by rule induction and generalization,, In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, (2001). Google Scholar

[210]

Z. Gu, Adaptive Information Extraction from Online Documents,, PhD thesis, (2006). Google Scholar

[211]

A. McCallum, D. Freitag and F. Pereira, Maximum entropy Markov models for information extraction and segmentation,, In Proceedings of ICML, (2000). Google Scholar

[212]

David M. Blei, Andrew Y. Ng, M. I. Jordan, Latent Dirichlet allocation,, Journal of Machine Learning Research, 3 (2003), 993. Google Scholar

[213]

B. Liu, Sentiment Analysis and Subjectivity,, N. Indurkhya & F. Damerau, (2010), 1. Google Scholar

[214]

R. Picard, Human-Computer Coupling,, Proceedings of the IEEE, 86 (1998), 1803. doi: 10.1109/5.704286. Google Scholar

[215]

P. Ekman and A. J. Fridlund, Assesment of Facial Behvior In Affective Disorders,, In J. D. Maser (Ed.) Depression and Expressive Behavior, (1987), 37. Google Scholar

[216]

P. Ekman, Universals and cultural differences in facial expressions of emotions,, In J. Cole (ed.), (1972), 207. Google Scholar

[217]

R. S. Lazarus, Emotion and Adaptation,, Oxford University Press, (1991). Google Scholar

[218]

N. S. Shami and K. Ehrlich, Making sense of strangers' expertise from signals in digital artifacts,, Proceeding: CHI '09 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2009), 69. doi: 10.1145/1518701.1518713. Google Scholar

[219]

C. Lee, HCI and aesthetics: The future of user interface design,, , (2007). Google Scholar

[220]

N. Tractinsky and D. Zmiri, Exploring Attributes of Skins as Potential Antecedents of Emotion in HCI,, in Fishwick, (2005). Google Scholar

[221]

E. Tufte, The Visual Display of Quantitative Information,, 2nd ed. Cheshire, (2001). Google Scholar

[222]

C. Reas and B. Fry, Processing: A Programming Handbook for Visual Designers and Artists Cambridge,, Massachusetts: MIT Press, (2007). Google Scholar

[223]

D. Ferrucci and A. Lally, UIMA: An architectural approach to unstructured information processing in the corporate research environment,, Natural Language Engineering, 10 (2004), 327. doi: 10.1017/S1351324904003523. Google Scholar

[224]

S. Bird, NLTK: The Natural Language Toolkit,, Proceedings of the COLING/ACL on Interactive presentation sessions, (2006). Google Scholar

[225]

C. Marrin, Webgl Specification,, Khronos WebGL Working Group, (2011). Google Scholar

[226]

I. Hickson, HTML Canvas 2D Context. W3C Working Draft,, World Wide Web Consortium, (2012). Google Scholar

[227]

A. Salga, D. Hodgin, A. Sobiepanek, S. Downe, M. Medel and C. Leung, Processing. js: Sketching with $<$canvas$>$,, In ACM SIGGRAPH 2011 Talks, (2011). Google Scholar

[228]

M. Whitelaw, Art against information: Case studies in data practice,, In: Murphy, (2006), 1. Google Scholar

[229]

S. Diamond, Many points of light: Visualization and the converging aesthetics of art, design and science,, reprinted 2012, (2012). Google Scholar

[230]

W. S. Cleveland, Visualizing Data. Summit,, NJ: Hobart Press, (1993). Google Scholar

[231]

C. Ware and R. Bobrow, Supporting visual queries on medium-size node-link diagrams,, Information Visualization, 4 (2005), 49. Google Scholar

[232]

S. Greenberg and B. Buxton, Usability evaluation considered harmful (some of the time),, CHI 2008 Proceedings, (2008), 111. doi: 10.1145/1357054.1357074. Google Scholar

[233]

J. Bardzell and J. Bardzell, Interaction criticism: A proposal for a framework for a new discipline of HCI,, CHI 2008 Proceedings, (2008), 2463. doi: 10.1145/1358628.1358703. Google Scholar

[234]

Beck et, al.,, 2001., (). Google Scholar

[235]

C. Spagnuolo, Social Media,, Boulder, (2013). Google Scholar

[236]

P. Wolkerstorfer, M. Tscheligi, R. Sefelin, H. Milchrahm, Z. Hussain, M. Lechner and S. Shahzad, Probing an agile usability process,, CHI 2008 Proceedings, (2008), 2151. doi: 10.1145/1358628.1358648. Google Scholar

[237]

S. Szigeti, F. Chevalier and S. Diamond, A faster horse: Data driven versus user-centred design for data visualization,, Submitted to CHI'13, (2013). Google Scholar

[238]

J. D. Gould and C. H. Lewis, Designing for usability: Key principles and what designers think,, CHI '83 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (1983), 50. doi: 10.1145/800045.801579. Google Scholar

[239]

G. Cockton, Revisiting usability's three key principles,, CHI 2008 Proceedings, (2008), 2473. doi: 10.1145/1358628.1358704. Google Scholar

[240]

, Lee,, 2007., (). Google Scholar

[241]

N. Tractinsky, A few notes on the study of beauty in HCI,, Human-Computer Interaction, 19 (2004), 351. doi: 10.1207/s15327051hci1904_3. Google Scholar

[242]

G. Guia, S. Oliver, S. Diamond and F. Chevalier, Visualizing sentiments in business customer relationships,, ACM, (2012). Google Scholar

[243]

S. Oliver, Guia Gali, F. Chevalier and S. Diamond, Fracturing media paradigms: Online navigation of online news media,, ACM. DIS 2012, (2012). Google Scholar

[244]

M. Sedlmair, P. Isenberg, D. Baur and A. Butz, Evaluating information visualization in large companies: Challenges, experiences and recommendations,, In Proc. BELIV'10, (2010), 79. doi: 10.1145/2110192.2110204. Google Scholar

[245]

S. Diamond, Many points of light: Visualization and the converging aesthetics of art, design and science, reprinted 2012,, in Critical Digital Studies Reader, (2012). Google Scholar

[1]

Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i

[2]

James H. Elder. A new training program in data analytics & visualization. Big Data & Information Analytics, 2016, 1 (1) : i-iii. doi: 10.3934/bdia.2016.1.1i

[3]

Yaguang Huangfu, Guanqing Liang, Jiannong Cao. MatrixMap: Programming abstraction and implementation of matrix computation for big data analytics. Big Data & Information Analytics, 2016, 1 (4) : 349-376. doi: 10.3934/bdia.2016015

[4]

Danuta Gaweł, Krzysztof Fujarewicz. On the sensitivity of feature ranked lists for large-scale biological data. Mathematical Biosciences & Engineering, 2013, 10 (3) : 667-690. doi: 10.3934/mbe.2013.10.667

[5]

Xiangmin Zhang. User perceived learning from interactive searching on big medical literature data. Big Data & Information Analytics, 2017, 2 (5) : 1-16. doi: 10.3934/bdia.2017019

[6]

Masataka Kato, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of energy-saving server scheduling on power consumption for large-scale data centers. Journal of Industrial & Management Optimization, 2016, 12 (2) : 667-685. doi: 10.3934/jimo.2016.12.667

[7]

Richard Boire. Understanding AI in a world of big data. Big Data & Information Analytics, 2017, 2 (5) : 22-42. doi: 10.3934/bdia.2018001

[8]

Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen. Big data collection and analysis for manufacturing organisations. Big Data & Information Analytics, 2017, 2 (2) : 127-139. doi: 10.3934/bdia.2017002

[9]

Enrico Capobianco. Born to be big: Data, graphs, and their entangled complexity. Big Data & Information Analytics, 2016, 1 (2&3) : 163-169. doi: 10.3934/bdia.2016002

[10]

Ali Asgary, Jianhong Wu. ADERSIM-IBM partnership in big data. Big Data & Information Analytics, 2016, 1 (4) : 277-278. doi: 10.3934/bdia.2016010

[11]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[12]

Mahmut Çalik, Marcel Oliver. Weak solutions for generalized large-scale semigeostrophic equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 939-955. doi: 10.3934/cpaa.2013.12.939

[13]

Philippe Bonneton, Nicolas Bruneau, Bruno Castelle, Fabien Marche. Large-scale vorticity generation due to dissipating waves in the surf zone. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 729-738. doi: 10.3934/dcdsb.2010.13.729

[14]

Jingmei Zhou, Xiangmo Zhao, Xin Cheng, Zhigang Xu. Visualization analysis of traffic congestion based on floating car data. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1423-1433. doi: 10.3934/dcdss.2015.8.1423

[15]

Ana Jofre, Lan-Xi Dong, Ha Phuong Vu, Steve Szigeti, Sara Diamond. Rendering website traffic data into interactive taste graph visualizations. Big Data & Information Analytics, 2017, 2 (2) : 107-118. doi: 10.3934/bdia.2017003

[16]

Weidong Bao, Wenhua Xiao, Haoran Ji, Chao Chen, Xiaomin Zhu, Jianhong Wu. Towards big data processing in clouds: An online cost-minimization approach. Big Data & Information Analytics, 2016, 1 (1) : 15-29. doi: 10.3934/bdia.2016.1.15

[17]

Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing. Journal of Industrial & Management Optimization, 2014, 10 (1) : 113-129. doi: 10.3934/jimo.2014.10.113

[18]

Suli Zou, Zhongjing Ma, Xiangdong Liu. Auction games for coordination of large-scale elastic loads in deregulated electricity markets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 833-850. doi: 10.3934/jimo.2016.12.833

[19]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[20]

Rouhollah Tavakoli, Hongchao Zhang. A nonmonotone spectral projected gradient method for large-scale topology optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 395-412. doi: 10.3934/naco.2012.2.395

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]