October  2016, 1(4): 377-389. doi: 10.3934/bdia.2016016

Disentangling data, information and knowledge

Computer Science Trust Fund Endowed Eminent Scholar, School of Computing & Informatics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA

Published  May 2017

Information, data and knowledge constitute the fundamental 'stuff' of computing and one might assume that in the seven decades since the advent of the modern computer theorists and practitioners of computing can differentiate between the concepts they denote. And, of course, computer scientists do not have exclusive claims over these terms or concepts: sociologists, cultural scholars, economists, historians, natural scientists, philosophers, and the managerial class have them as part of their vocabularies. The surprising fact is that these terms and the concepts they denote are far from distinct. They form a tangled web. In this essay I address the question: what is the relationship between data, information and knowledge? I attempt to disentangle -and clarify -how these terms are in fact interpreted by practitioners in such diverse disciplines as information science, historical research, empirical sciences, cognitive science, data mining and computer programming and to identify what appears to be a common thread.

Citation: Subrata Dasgupta. Disentangling data, information and knowledge. Big Data & Information Analytics, 2016, 1 (4) : 377-389. doi: 10.3934/bdia.2016016
[1]

Martin Lara, Sebastián Ferrer. Computing long-lifetime science orbits around natural satellites. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 293-302. doi: 10.3934/dcdss.2008.1.293

[2]

Jean-Philippe Cointet, David Chavalarias. Multi-level science mapping with asymmetrical paradigmatic proximity. Networks & Heterogeneous Media, 2008, 3 (2) : 267-276. doi: 10.3934/nhm.2008.3.267

[3]

Thierry Gallay, Guido Schneider, Hannes Uecker. Stable transport of information near essentially unstable localized structures. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 349-390. doi: 10.3934/dcdsb.2004.4.349

[4]

Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i

[5]

Yaguang Huangfu, Guanqing Liang, Jiannong Cao. MatrixMap: Programming abstraction and implementation of matrix computation for big data analytics. Big Data & Information Analytics, 2016, 1 (4) : 349-376. doi: 10.3934/bdia.2016015

[6]

Min-Fan He, Li-Ning Xing, Wen Li, Shang Xiang, Xu Tan. Double layer programming model to the scheduling of remote sensing data processing tasks. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1515-1526. doi: 10.3934/dcdss.2019104

[7]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089

[8]

Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems & Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020

[9]

Jörg Härterich, Matthias Wolfrum. Describing a class of global attractors via symbol sequences. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 531-554. doi: 10.3934/dcds.2005.12.531

[10]

C. Kopf. Symbol sequences and entropy for piecewise monotone transformations with discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 299-304. doi: 10.3934/dcds.2000.6.299

[11]

Guillaume Bal, Eric Bonnetier, François Monard, Faouzi Triki. Inverse diffusion from knowledge of power densities. Inverse Problems & Imaging, 2013, 7 (2) : 353-375. doi: 10.3934/ipi.2013.7.353

[12]

Benjamin Steinberg, Yuqing Wang, Huaxiong Huang, Robert M. Miura. Spatial Buffering Mechanism: Mathematical Model and Computer Simulations. Mathematical Biosciences & Engineering, 2005, 2 (4) : 675-702. doi: 10.3934/mbe.2005.2.675

[13]

Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008

[14]

William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307

[15]

Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255

[16]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[17]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[18]

Yuri Trakhinin. On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1371-1399. doi: 10.3934/cpaa.2016.15.1371

[19]

Rui Wang, Denghua Zhong, Yuankun Zhang, Jia Yu, Mingchao Li. A multidimensional information model for managing construction information. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1285-1300. doi: 10.3934/jimo.2015.11.1285

[20]

Mary J. Bravo, Marco Caponigro, Emily Leibowitz, Benedetto Piccoli. Keep right or left? Towards a cognitive-mathematical model for pedestrians. Networks & Heterogeneous Media, 2015, 10 (3) : 559-578. doi: 10.3934/nhm.2015.10.559

 Impact Factor: 

Metrics

  • PDF downloads (12)
  • HTML views (230)
  • Cited by (0)

Other articles
by authors

[Back to Top]