[1]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[2]
|
J.-F. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 20 (2010), 1956-1982.
doi: 10.1137/080738970.
|
[3]
|
Z. Cai and Y. Wang, A multiobjective optimization-based evolutionary algorithm for constrained optimization, IEEE Transactions on Evolutionary Computation, 10 (2006), 658-675.
doi: 10.1109/TEVC.2006.872344.
|
[4]
|
E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?
Journal of the ACM (JACM), 58 (2011), Art. 11, 37 pp.
doi: 10.1145/1970392.1970395.
|
[5]
|
E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations
of Computational Mathematics, 9 (2009), 717-772.
doi: 10.1007/s10208-009-9045-5.
|
[6]
|
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo and A. S. Willsky, Rank-sparsity incoherence for matrix decomposition, SIAM Journal on Optimization, 21 (2011), 572-596.
doi: 10.1137/090761793.
|
[7]
|
C. A. C. Coello, D. A. Van~Veldhuizen and G. B. Lamont,
Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic Algorithms and Evolutionary Computation, 5. Kluwer Academic/Plenum Publishers, New York, 2002.
doi: 10.1007/978-1-4757-5184-0.
|
[8]
|
K. Deb,
Multi-objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Ltd. , Chichester, 2001.
|
[9]
|
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017.
|
[10]
|
M. Fazel, H. Hindi and S. P. Boyd, A rank minimization heuristic with application to minimum order system approximation, in Proceedings of the American Control Conference, IEEE, 6 (2001), 4734-4739.
doi: 10.1109/ACC.2001.945730.
|
[11]
|
M. Gong, L. Jiao, H. Du and L. Bo, Multiobjective immune algorithm with nondominated neighbor-based selection, Evolutionary Computation, 16 (2008), 225-255.
doi: 10.1162/evco.2008.16.2.225.
|
[12]
|
Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), vol. 61,2009.
|
[13]
|
Z. Lin, M. Chen and Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv preprint, arXiv: 1009.5055, 2010.
|
[14]
|
K. Miettinen,
Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, MA, 1999.
|
[15]
|
C. Qian, Y. Yu and Z.-H. Zhou, Pareto ensemble pruning, in AAAI, (2015), 2935-2941.
|
[16]
|
————, Subset selection by pareto optimization, in Advances in Neural Information Processing Systems, (2015), 1774-1782.
|
[17]
|
B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Review, 52 (2010), 471-501.
doi: 10.1137/070697835.
|
[18]
|
J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in Proceedings of the 1st international Conference on Genetic Algorithms. L. Erlbaum Associates Inc. , (1985), 93-100.
|
[19]
|
J. L. Starck, M. Elad and D. L. Donoho, Image decomposition via the combination of sparse representations and a variational approach, IEEE Transactions on Image Processing, 14 (2005), 1570-1582.
doi: 10.1109/TIP.2005.852206.
|
[20]
|
J. Yan, J. Liu, Y. Li, Z. Niu and Y. Liu, Visual saliency detection via rank-sparsity decomposition, in IEEE International Conference on Image Processing, IEEE, (2010), 1089-1092.
doi: 10.1109/ICIP.2010.5652280.
|
[21]
|
X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, Pacific Journal of Optimization, 9 (2013), 167-180.
|
[22]
|
C. Zhang, J. Liu, Q. Tian, C. Xu, H. Lu and S. Ma, Image classification by non-negative
sparse coding, low-rank and sparse decomposition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2011), 1673-1680.
doi: 10.1109/CVPR.2011.5995484.
|
[23]
|
Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation, 11 (2007), 712-731.
|
[24]
|
M. Zibulevsky and B. A. Pearlmutter, Blind source separation by sparse decomposition in a signal dictionary, Neural Computation, 13 (2001), 863-882.
|
[25]
|
E. Zitzler, M. Laumanns and L. Thiele, et al., SPEA2: Improving the strength pareto evolutionary algorithm, in Eurogen, 3242 (2001), 95-100.
|