[1]
|
T. Chen, J. Cai and L. Guo, Research on hybrid face recognition algorithm based on voting Extreme Learning Machine, Journal of Zhengzhou University (Engineering Science), 37 (2016), 37-41.
|
[2]
|
J. M. Cross and C. L. Smith, Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification, Institute of Electrical and Electronics Engineers Conference on Security Technology, (1995), 20-35.
doi: 10.1109/CCST.1995.524729.
|
[3]
|
S. Dong, J. Yang and Y. Chen, Finger vein recognition based on multi-orientation weighted symmetric local graph structure, KSII Transactions on Internet and Information Systems, 9 (2015), 4126-4142.
|
[4]
|
J. Hashimoto, Finger vein authentication technology and its future, Symposium on VLSI Circuits, (2006), 5-8.
doi: 10.1109/VLSIC.2006.1705285.
|
[5]
|
C. B. Hsu, S. S. Hao and J. C. Lee, Personal authentication through dorsal hand vein patterns, Optical Engineering, 50 (2011), 087201, 10pp.
doi: 10.1117/1.3607413.
|
[6]
|
G. B. Huang, Q. Y. Zhu and C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489-501.
doi: 10.1016/j.neucom.2005.12.126.
|
[7]
|
S. K. Im, H. M. Park and Y. W. Kim, An biometric identification system by extracting hand vein patterns, Journal-korean Physical Society, 3 (2001), 268-272.
|
[8]
|
M. Kono, H. Ueki and S. I. Umemura, A new method for the identification of individuals by using of vein pattern matching of a finger, The Fifth Symposium on Pattern Mea-surement, (2000), 9-12.
|
[9]
|
A. Kumar and K. V. Prathyusha, Personal authentication using hand vein triangulation and knuckle shape, IEEE Transactions on Image processing, 18 (2009), 2127-2136.
doi: 10.1109/TIP.2009.2023153.
|
[10]
|
X. Li, S. Guo and F. Gao, Vein pattern recognitions by moment invariants, Bioinformatics and Biomedical Engineering, (2007), 612-615.
doi: 10.1109/ICBBE.2007.160.
|
[11]
|
D. Mulyono and H. S. Jinn, A study of finger vein biometric for personal identification, International Symposium on Biometrics and Security Technologies, (2008), 1-8.
doi: 10.1109/ISBAST.2008.4547655.
|
[12]
|
B. Y. Qu, B. F. Lang and J. J. Liang, Two-hidden-layer extreme learning machine for regression and classification, Neurocomputing, 175 (2016), 826-834.
doi: 10.1016/j.neucom.2015.11.009.
|
[13]
|
N. Sugandhi, M. Mathankumar and V. Priya, Real time authentication system using advanced finger vein recognition technique, International Conference on Communications and Signal Processing, (2014), 1183-1187.
|
[14]
|
J. Wang, Q. Chang and J. Peng, The Optimization of the Extreme Learning Machine and fitting analysis, Journal of Zhengzhou University (Engineering Science), 37 (2016), 20-24.
|
[15]
|
L. Wang and G. Leedham, Near and far infrared imaging for vein pattern biometrics, Video and Signal Based Surveillance, (2006), 52-58.
doi: 10.1109/AVSS.2006.80.
|
[16]
|
Y. Wang, K. Li and J. Cui, Hand-dorsa vein recognition based on partition local binary pattern, IEEE 10th International Conference on Signal Processing, (2010), 1671-1674.
doi: 10.1109/ICOSP.2010.5656717.
|
[17]
|
K. S. Wu, J. C. Lee and T. M. Lo, A secure palm vein recognition system, Journal of Systems and Software, 86 (2013), 2870-2876.
doi: 10.1016/j.jss.2013.06.065.
|
[18]
|
J. Yang and X. Li, Efficient finger vein localization and recognition, Pattern Recognition, (2010), 1148-1151.
doi: 10.1109/ICPR.2010.287.
|
[19]
|
W. Yang, X. Huang and F. Zhou, Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion, Information Sciences, 268 (2014), 20-32.
doi: 10.1016/j.ins.2013.10.010.
|