
-
Previous Article
A novel approach using incremental under sampling for data stream mining
- BDIA Home
- This Issue
-
Next Article
User perceived learning from interactive searching on big medical literature data
What can we learn about the Middle East Respiratory Syndrome (MERS) outbreak from tweets?
1. | School of Nursing, Columbia University Medical Center, New York, NY, 10032, USA |
2. | Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA |
3. | Digital Library, UCLA, Los Angeles, CA, 90095, USA |
4. | Department of Nursing, Hoseo University, Asan, South Korea |
Middle East Respiratory Syndrome (MERS, 메르스 in Korean) is an emerging deadly viral respiratory disease with no treatment. This study applied a triangulation approach of quantitative structure and content mining techniques while incorporating qualitative approaches guided by domain experts, to understand #MERS and #메르스 tweets. This study sought to gain insights about culturally-appropriate nursing activities for an emerging global acute disease management.
References:
[1] |
D. M. Blei, A. Y. Ng and M. I. Jordan, Latent dirichlet allocation, Journal of machine Learning research, 3 (2003), 993-1022. Google Scholar |
[2] |
P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss and C. M. Danforth, Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter, PloS one, 6 (2011), e26752.
doi: 10.1371/journal.pone.0026752. |
[3] |
J. Fawcett and C. H. Ellenbecker,
A proposed conceptual model of nursing and population health, Nursing outlook, 63 (2015), 288-298.
doi: 10.1016/j.outlook.2015.01.009. |
[4] |
D. Kuang and H. Park, Fast rank-2 nonnegative matrix factorization for hierarchical document clustering, in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2013,739-747.
doi: 10.1145/2487575.2487606. |
[5] |
M. Lui and T. Baldwin, Cross-domain feature selection for language identification, in Proceedings of 5th International Joint Conference on Natural Language Processing, Citeseer, 2011. Google Scholar |
[6] |
S. Yoon and S. Bakken, Methods of knowledge discovery in tweets, in NI 2012: Proceedings of the 11th International Congress on Nursing Informatics, vol. 2012, American Medical Informatics Association, 2012. Google Scholar |
show all references
References:
[1] |
D. M. Blei, A. Y. Ng and M. I. Jordan, Latent dirichlet allocation, Journal of machine Learning research, 3 (2003), 993-1022. Google Scholar |
[2] |
P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss and C. M. Danforth, Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter, PloS one, 6 (2011), e26752.
doi: 10.1371/journal.pone.0026752. |
[3] |
J. Fawcett and C. H. Ellenbecker,
A proposed conceptual model of nursing and population health, Nursing outlook, 63 (2015), 288-298.
doi: 10.1016/j.outlook.2015.01.009. |
[4] |
D. Kuang and H. Park, Fast rank-2 nonnegative matrix factorization for hierarchical document clustering, in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2013,739-747.
doi: 10.1145/2487575.2487606. |
[5] |
M. Lui and T. Baldwin, Cross-domain feature selection for language identification, in Proceedings of 5th International Joint Conference on Natural Language Processing, Citeseer, 2011. Google Scholar |
[6] |
S. Yoon and S. Bakken, Methods of knowledge discovery in tweets, in NI 2012: Proceedings of the 11th International Congress on Nursing Informatics, vol. 2012, American Medical Informatics Association, 2012. Google Scholar |



[1] |
Qin Wang, Laijun Zhao, Rongbing Huang, Youping Yang, Jianhong Wu. Interaction of media and disease dynamics and its impact on emerging infection management. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 215-230. doi: 10.3934/dcdsb.2015.20.215 |
[2] |
Giancarlo Bigi. Componentwise versus global approaches to nonsmooth multiobjective optimization. Journal of Industrial & Management Optimization, 2005, 1 (1) : 21-32. doi: 10.3934/jimo.2005.1.21 |
[3] |
Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217 |
[4] |
Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186 |
[5] |
Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 |
[6] |
C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 |
[7] |
Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 |
[8] |
Samantha Erwin, Stanca M. Ciupe. Germinal center dynamics during acute and chronic infection. Mathematical Biosciences & Engineering, 2017, 14 (3) : 655-671. doi: 10.3934/mbe.2017037 |
[9] |
Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks & Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405 |
[10] |
Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175 |
[11] |
Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419 |
[12] |
Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643 |
[13] |
Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995 |
[14] |
Robinson Duque, Alejandro Arbelaez, Juan Francisco Díaz. CP and MIP approaches for soccer analysis. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1535-1564. doi: 10.3934/jimo.2018109 |
[15] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[16] |
Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797 |
[17] |
Aslak Tveito, Glenn T. Lines, Pan Li, Andrew McCulloch. Defining candidate drug characteristics for Long-QT (LQT3) syndrome. Mathematical Biosciences & Engineering, 2011, 8 (3) : 861-873. doi: 10.3934/mbe.2011.8.861 |
[18] |
Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1127-1139. doi: 10.3934/mbe.2015.12.1127 |
[19] |
Wenxiong Chen, Congming Li. Some new approaches in prescribing gaussian and salar curvature. Conference Publications, 1998, 1998 (Special) : 148-159. doi: 10.3934/proc.1998.1998.148 |
[20] |
H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Hien T. Tran. A comparison of nonlinear filtering approaches in the context of an HIV model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 213-236. doi: 10.3934/mbe.2010.7.213 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]