\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Identifying electronic gaming machine gambling personae through unsupervised session classification

Abstract Full Text(HTML) Figure(10) / Table(13) Related Papers Cited by
  • The rising accessibility in gambling products, such as Electronic Gaming Machines (EGM), has increased interest in the effects of gambling; in particular, the potential for impulse control disorders, such as problem gambling. Nevertheless, empirical research of EGM gambling behaviour is scarce. In this exploratory study, we apply data mining techniques on 46,416 gambling sessions, collected in situ from 288 EGMs. Our research focused on identifying the at-risk behavioural markers of sessions to help distinguish gambling personae. Our data included measures of gambling involvement, out-of pocket expense of sessions, amount won, and cost of gambling. This research, discusses the methodology used to collect and analyze the required gambling measures, explains the criteria used for identifying valid sessions, and combines outlier mining methods to identify instances of heavily involved gambling (i.e., outliers). Our results suggest that sessions were classified as potential non-problem, potential low-risk, potential moderate risk, and potential problem gambling sessions. Further, outlier sessions were more heavily involved in terms of gambling intensity and amount redeemed, despite having low duration times. Finally, our methods suggest that the lack of player identification does not prevent one from identifying the potential incidence of problem gambling behaviour.

    Mathematics Subject Classification: Primary: 91C20, 62H30; Secondary: 03C45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Binned EGM Gambling Sessions Based on Hours Played

    Figure 2.  Valid EGM Gambling Sessions

    Figure 3.  Test of Normality: Boxplot Analysis

    Figure 4.  Test of Normality: Normal Q-Q Plot Analysis

    Figure 5.  Scatterplot: Clustered sessions

    Figure 6.  Between Groups One-Way ANOVA: Means Plots

    Figure 7.  Boxplot Analysis on Clustered Data: Duration

    Figure 8.  Scatterdot: Cluster 1 Outlier Analysis

    Figure 9.  Scatterdot: Cluster 2 Outlier Analysis

    Figure 10.  Scatterdot: Cluster 4 Outlier Analysis

    Table 1.  Descriptive Statistics Measures of EGM Sessions

    Variables Mean SD Median Mode Max. Min.
    Durationa 42.03 109.09 15.67 3.87 1099.72 0.17
    Bets 373 606 170 3 13,282 2
    Intensity 16 10 19 20 68 0
    Redeemedb 70.49 150.75 30.00 20.00 6,425.00 5.00
    Vouchersb 50.44 384.18 0.05 0 40,833.05 0
    Net Lossb 52.09 133.39 19.90 0 6,424.69 0
    %Loss 75.46 40.97 99.97 100.00 100.00 0
    a. Measured in minutes.
    b. Measured in Euros.
     | Show Table
    DownLoad: CSV

    Table 2.  Spearman™s Rank-Order Correlation Analysis

    Spearman™s Rho
    Duration Bets Intensity Redeemed Vouchers Net Loss %Loss
    Duration $r_{s}$ . .515** -.208** .341** -.334** .374** .406**
    Sig. . .000 .000 .000 .000 .000 .000
    Bets $r_{s}$ .515** . .606** .690** .224** .356** -.150**
    Sig. .000 . .000 .000 .000 .000 .000
    Intensity $r_{s}$ -.208** .606** . .433** .640** -.003 -.608**
    Sig. .000 .000 .000 .000 .511 .000 0.000
    Redeemed $r_{s}$ .341** .690** .433** . .177** .584** -.068**
    Sig. .000 .000 .000 . .000 .000 .000
    Vouchers $r_{s}$ -.334** .224** .640** .177** . -.512** -.980**
    Sig. .000 .000 .000 .000 . .000 .000
    Net Loss $r_{s}$ .374** .356** -.003 .584** -.512** . .592**
    Sig. .000 .000 .511 .000 .000 . .000
    %Loss $r_{s}$ .406** -.150** -.608** -.068** -.980** .592** .
    Sig. .000 .000 .000 .000 .000 .000 .
    ** Correlation is significant at the 0.01 level (2-tailed).
     | Show Table
    DownLoad: CSV

    Table 3.  Crosstabulation: Sample 1 v. Full Sample (k = 4)

    Cluster Membership (Sample 1) v. Cluster Membership (Full Sample) Crosstabulation)
    Cluster Mship. (Full Sample)
    1 2 3 4 Total
    Cluster Mship. 1 Count 6944 15 0 0 6,959
    (Sample 1) Expected Count 2,071.5 2,171.1 123.2 2,593.2 6,959
    % within Cluster (sample 1) 99.8% 0.2% 0% 0% 100%
    % within Cluster (full sample) 100% 0.2% 0% 0% 29.8%
    % of Total 29.8% 0.1% 0% 0% 29.8%
    2 Count 0 7,263 0 44 7,307
    Expected Count 2,175.1 2,279.7 129.4 2,722.9 7,307
    % within Cluster (sample 1) 0% 99.4% 0% 0.6% 100%
    % within Cluster (full sample) 0% 99.8% 0% 0.5% 31.3%
    % of Total 0% 31.1% 0% 0.2% 31.3%
    3 Count 0 0 413 0 413
    Expected Count 122.9 128.9 7.3 153.9 413
    % within Cluster (sample 1) 0% 0% 100% 0% 100%
    % within Cluster (full sample) 0% 0% 100% 0% 1.8%
    % of Total 0% 0% 1.8% 0% 1.8%
    4 Count 0 0 0 8,649 8,649
    Expected Count 2,574.5 2,698.4 153.1 3,223 8,649
    % within Cluster (sample 1) 0% 0% 0% 100% 100%
    % within Cluster (full sample) 0% 0% 0% 99.5% 37.1%
    % of Total 0% 0% 0% 37.1% 37.1%
    Total Count 6,944 7,278 413 8,693 23,328
    Expected Count 6,944 7,278 413 8,693 23,328
    % within Cluster (sample 1) 29.80% 31.20% 1.8% 37.3% 100%
    % within Cluster (full sample) 100% 100% 100% 100% 100%
    % of Total 29.80% 31.20% 1.8% 37.3% 100%
     | Show Table
    DownLoad: CSV

    Table 4.  Crosstabulation: Sample 2 v. Full Sample (k = 4)

    Cluster Membership (Sample 2) v. Cluster Membership (Full Sample) Crosstabulation)
    Cluster Mship. (Full Sample)
    1 2 3 4 Total
    Cluster Mship. 1 Count 6,871 0 0 0 6,871
    (Sample 2) Expected Count 2,053.1 2,148.1 122.3 2,547.5 6,871
    % within Cluster (sample 2) 100% 0% 0% 0% 100%
    % within Cluster (full sample) 99.6% 0% 0% 0% 29.8%
    % of Total 29.8% 0% 0% 0% 29.8%
    2 Count 28 7,162 0 0 7,190
    Expected Count 2,148.5 2247.8 128 2,665.7 7,190
    % within Cluster (sample 2) 0.4% 9, 9.6% 0% 0% 100%
    % within Cluster (full sample) 0.4% 99.2% 0% 0% 31.10%
    % of Total 0.1% 31.0% 0% 0% 31.10%
    3 Count 0 0 411 0 411
    Expected Count 122.8 128.5 7.3 152.4 411
    % within Cluster (sample 2) 0% 0% 100% 0% 100%
    % within Cluster (full sample) 0% 0% 100% 0% 1.8%
    % of Total 0% 0% 1.8% 0% 1.8%
    4 Count 0 56 0 8,560 8,616
    Expected Count 2,574.6 2,693.6 153.4 3,194.4 8,616
    % within Cluster (sample 2) 0% 0.6% 0% 99.4% 100%
    % within Cluster (full sample) 0% 0.8% 0% 100% 37.30%
    % of Total 0% 0.2% 0% 37.1% 37.3%
    Total Count 6,899 7,218 411 8,560 23,088
    Expected Count 6,899 7,218 411 8,560 23,088
    % within Cluster (sample 2) 29.9% 31.3% 1.8% 37.1% 100%
    % within Cluster (full sample) 100% 100% 100% 100% 100%
    % of Total 29.9% 31.3% 1.8% 37.1% 100%
     | Show Table
    DownLoad: CSV

    Table 5.  Descriptive Statistics: Cluster 1 Sessions

    Cluster 1 Sessions a
    Variables Mean SD Median Max. 25th 75th
    Duration$^{b}$ 47.14 56.17 27.65 412.77 12.33 59.20
    Bets 122 168 68 3,648 34 142
    Intensity 4.09 3.10 3.35 11.27 1.32 6.58
    Redeemed$^{c}$ 30.02 45.04 20.00 1,215.00 10.00 40.00
    Vouchers$^{c}$ 1.60 23.41 .00 1,962.93 .00 .00
    Net Loss$^{c}$ 29.48 45.13 20.00 1,215.00 10.00 40.00
    %Loss 97.36 15.70 100.00 100.00 100.00 100.00
    a. n = 13,843
    b. Measured in minutes.
    c. Measured in Euros.
     | Show Table
    DownLoad: CSV

    Table 6.  Descriptive Statistics: Cluster 2 Sessions

    Cluster 2 Sessions a
    Variables Mean SD Median Max. 25th 75th
    Duration$^{b}$ 14.34 17.26 9.07 326.85 4.57 17.32
    Bets 247 299 153 5,344 75 302
    Intensity 17.26 3.17 17.81 21.91 14.77 20.03
    Redeemed$^{c}$ 54.98 94.35 30.00 2,450.00 10.00 50.00
    Vouchers$^{c}$ 44.06 412.79 .20 40,833.05 .00 20.00
    Net Loss$^{c}$ 42.74 90.52 19.75 2,450.00 4.60 50.00
    %Loss 71.77 43.03 99.25 100.00 19.05 100.00
    a. n = 14,496
    b. Measured in minutes.
    c. Measured in Euros.
     | Show Table
    DownLoad: CSV

    Table 7.  Descriptive Statistics: Cluster 3 Sessions

    Cluster 3 Sessions a
    Variables Mean SD Median Max. 25th 75th
    Duration$^{b}$ 782.53 160.19 780.66 1,099.72 686.27 899.45
    Bets 246 524 86 6,715 39 227
    Intensity .32 .66 .12 7.25 .05 .31
    Redeemed$^{c}$ 52.34 127.88 20.00 1,530.00 10.00 50.00
    Vouchers$^{c}$ .00 .00 .00 .00 .00 .00
    Net Loss$^{c}$ 52.34 127.88 20.00 1,530.00 10.00 50.00
    %Loss 100.00 .00 100.00 100.00 100.00 100.00
    a. n = 824
    b. Measured in minutes.
    c. Measured in Euros.
     | Show Table
    DownLoad: CSV

    Table 8.  Descriptive Statistics: Cluster 4 Sessions

    Cluster 4 Sessions a
    Variables Mean SD Median Max. 25th 75th
    Duration$^{b}$ 25.84 29.94 16.07 394.65 7.57 32.75
    Bets 688 844 413 13,282 193 855
    Intensity 26.12 4.00 25.35 68.32 23.59 27.43
    Redeemed$^{c}$ 116.87 218.11 50.00 6,425.00 20.00 120.00
    Vouchers$^{c}$ 97.40 499.21 .45 33,602.76 .20 100.00
    Net Loss$^{c}$ 78.06 193.43 19.90 6,424.69 .00 70.00
    %Loss 58.59 45.74 97.32 100.00 .00 99.73
    a. n = 17,253
    b. Measured in minutes.
    c. Measured in Euros.
     | Show Table
    DownLoad: CSV

    Table 9.  Between-Groups One-Way ANOVA

    ANOVA
    Sum of Squares df Mean Square F Sig.
    Duration Between Groups 386.957 3 128.986 85580.335 .000
    Within Groups 69.952 46412 .002
    Total 456.909 46415
    Intensity Between Groups 847.409 3 282.470 110089.371 .000
    Within Groups 119.085 46412 .003
    Total 966.493 46415
    Redeemed Between Groups 1.542* 3 .514 991.576 .000
    Within Groups 24.052 46412 .001
    Total 25.593 46415
     | Show Table
    DownLoad: CSV

    Table 10.  Kruskal-Wallis Results

    Ranks
    Cluster Membership N Mean Rank
    Duration 1 13,843 28907.31
    2 14,496 16544.68
    3 824 46004.50
    4 17,253 23146.26
    Total 46,416
    Intensity 1 13,843 7706.21
    2 14,496 21919.71
    3 824 1090.35
    4 17,253 37786.01
    Total 46,416
    Redeemed 1 13,843 16455.75
    2 14,496 22349.74
    3 824 17893.58
    4 17,253 29601.97
    Total 46,416
     | Show Table
    DownLoad: CSV

    Table 11.  Scatterdot: Cluster 1 Outlier Analysis

    Descriptive Statistics: Cluster 1 Sessions (Normal v. Outliers)
    Normal Outlier
    Mean SD Median Count Mean SD Median Count
    Duration 23.89 16.98 10815 130.20 67.56 3028
    Bets 93 93 62 224 292 116
    Intensity 4.67 3.02 4.22 1.99 2.37 .98
    Redeemed 25.74 33.03 20.00 45.31 71.28 20.00
    Voucher 2.02 26.37 .00 .08 4.37 .00
    Net Loss 25.05 33.09 15.00 45.31 71.28 20.00
    %Loss 96.63 17.67 100.00 99.97 1.82 100.00
     | Show Table
    DownLoad: CSV

    Table 12.  Cluster 2 Sessions (Normal v. Outliers)

    Descriptive Statistics: Cluster 2 Sessions (Normal v. Outliers)
    Normal Outlier
    Mean SD Median Count Mean SD Median Count
    Duration 12.64 11.73 14198 95.54 34.68 298
    Bets 218 209 149 1599 622 1461
    Intensity 17.27 3.18 17.84 16.80 2.95 16.99
    Redeemed 51.40 81.72 25.00 225.45 292.33 150.00
    Voucher 44.46 415.10 .20 24.98 281.31 .00
    Net Loss 39.02 76.65 19.65 219.91 294.73 147.50
    %Loss 71.28 43.23 99.10 94.85 21.61 100.00
     | Show Table
    DownLoad: CSV

    Table 13.  Cluster 4 Sessions (Normal v. Outliers)

    Descriptive Statistics: Cluster 4 Sessions (Normal v. Outliers)
    Normal Outlier
    Mean SD Median Count Mean SD Median Count
    Duration 23.04 21.79 16907 162.67 49.02 346
    Bets 609 603 401 4519 1656 4071
    Bets per Minute 26.09 3.99 25.32 27.65 4.58 26.88
    Redeemed 106.51 173.11 50.00 623.16 805.07 350.00
    Voucher 94.80 496.65 .45 224.20 598.56 .20
    Net Loss 69.34 151.70 19.85 504.17 746.68 259.93
    %Loss 59.55 45.81 97.00 72.47 40.45 99.97
     | Show Table
    DownLoad: CSV
  • [1] C. C. Aggarwal, Outlier Analysis, Springer, New York, 2013.
    [2] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, American Psychiatric Association, Washington, DC, 1994.
    [3] G. Banks, R. Fitzgerald and L. Sylvan, Gambling: Productivity Commission Inquiry Report, Technical Report 50,2010, http://www.pc.gov.au/inquiries/completed/gambling-2009/report/gambling-report-volume1.pdf(visited on: 09/12/2012).
    [4] M. Berry and G. Linoff, Data Mining Techniques for Marketing, Sales, and Customer Relationship Management, 2nd edition, Wiley Publishing Inc., Indianapolis, 2004.
    [5] J. BravermanR.A. LaBrie and H.J. Shaffer, A taxometric analysis of actual Internet sport gambling behavior, Psychological Assessment, 23 (2011), 234-244.  doi: 10.1037/a0021404.
    [6] J. BravermanD.A. LaPlanteS.E. Nelson and H.J. Shaffer, Using cross-game behavioral markers for early identification of high-risk Internet gamblers, Psychology of Addictive Behaviors, 27 (2013), 868-877.  doi: 10.1037/a0032818.
    [7] J. Braverman and H.J. Shaffer, How do gamblers start gambling: Identifying behavioral markers for high-risk Internet gambling, European Journal of Public Health, 22 (2012), 273-278.  doi: 10.1093/eurpub/ckp232.
    [8] S. Carpendale, Evaluating information visualizations, in Information Visualization, Lecture Notes in Computer Science, A simple univariate outlier identification procedure, 4950 (2008), 19-45. doi: 10.1007/978-3-540-70956-5_2.
    [9] National Research CouncilPathological Gambling: A Critical Review, National Academies Press, Washington D.C., 1999. 
    [10] P. Delfabbro, A. Osborn, M. Nevile, L. Skelt and J. MacMillen, Identifying Problem Gamblers in Gambling Venues, Technical report, 2007.
    [11] M.J. DixonK.A. HarriganM. JarrickV. MacLarenJ.A. Fugelsang and E. Sheepy, Psychophysiological arousal signatures of near-misses in slot machine play, International Gambling Studies, 11 (2011), 393-407.  doi: 10.1080/14459795.2011.603134.
    [12] L. DixonR. Trigg and M. Griffiths, An empirical investigation of music and gambling behaviour, International Gambling Studies, 7 (2007), 315-326.  doi: 10.1080/14459790701601471.
    [13] S. DragicevicG. Tsogas and A. Kudic, Analysis of casino online gambling data in relation to behavioural risk markers for high-risk gambling and player protection, International Gambling Studies, 11 (2011), 377-391.  doi: 10.1080/14459795.2011.629204.
    [14] M. ElleryS.H. Stewart and P. Loba, Alcohol's effects on video lottery terminal (vlt) play among probable pathological and non-pathological gamblers, Journal of Gambling Studies, 21 (2005), 299-324.  doi: 10.1007/s10899-005-3101-0.
    [15] J. Ferris and H. Wynne, The Canadian Problem Gambling Index: Final Report, Technical Report, 2001, http://www.ccgr.ca/en/projects/resources/CPGI-Final-Report-English.pdf(visited on: 06/28/2013).
    [16] G. Data, Canadian Gaming Market Report, Technical report, 2011, http://www.gamblingdata.com/files/Gambling%20Data%20Canadian%20Gaming%20Market%20Report%20Final_0.pdf (visited on: 04/10/2013).
    [17] GSA, G2S Message Protocol v1. 1 Game-to-system, Technical Report GSA-P0075. 024. 00-2011, GSA, 2011.
    [18] GSA, G2S Message Protocol v2. 0 Game-to-system, Technical Report GSA-P0075. 0800. 00-2006, GSA, 2006.
    [19] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 3rd edition, Morgan Kaufmann, Waltham, 2012.
    [20] K.A. Harrigan and M. Dixon, Par sheets, probabilities, and slot machine play: Implications of problem and non-problem gambling, Journal of Gambling Issues, 23 (2009), 81-110. 
    [21] K.A. Harrigan, Slot machine structural characteristics: Distorted player views of payback percentages, Journal of Gambling Issues, 20 (2007), 215-234. 
    [22] K.A. Harrigan, Slot machines: Pursuing responsible gaming practices for virtual reels and near misses, International Journal of Mental Health Addiction, 7 (2009), 68-83.  doi: 10.1007/s11469-007-9139-8.
    [23] C. Hennig, Cluster-wise assessment of cluster stability, Computational Statistics & Data Analysis, 52 (2007), 258-271.  doi: 10.1016/j.csda.2006.11.025.
    [24] D.C. Hoaglin, John W. Tukey and data analysis, Statistical Science, 18 (2003), 311-318.  doi: 10.1214/ss/1076102418.
    [25] B. Iglewicz and S. Banerjee, A Simple Univariate Outlier Identification Procedure, Proceedings of Annual Meeting of the American Statistical Association, 2001.
    [26] R.A. LaBrieD.A. LaPlanteS.E. NelsonA. Schumann and H.J. Shaffer, Assessing the playing field: A prospective longitudinal study of Internet sports gambling behavior, Journal of Gambling Studies, 23 (2007), 347-362.  doi: 10.1007/s10899-007-9067-3.
    [27] R.A. LaBrieS.A. KaplanD.A. LaPlanteS.E. Nelson and H.J. Shaffer, Inside the virtual casino: A prospective longitudinal study of actual Internet casino gambling, European Journal of Public Health, 18 (2008), 410-416.  doi: 10.1093/eurpub/ckn021.
    [28] D. A. LaPlanteS. E. NelsonR. A. LaBrie and H. J. Shaffer, Stability and progression of disordered gambling: Lessons from longitudinal studies, Canadian Journal of Psychiatry, 53 (2008), 52-60.  doi: 10.1177/070674370805300108.
    [29] D.A. LaPlanteS.E. NelsonR.A. LaBrie and H.J. Shaffer, Disordered gambling, type of gambling and gambling involvement in the British gambling prevalence survey 2007, European Journal of Public Health, 21 (2011), 532-537.  doi: 10.1093/eurpub/ckp177.
    [30] H. Liu and V. Keselj, Combined mining of web server logs and web contents for classifying user navigation patterns and predicting users' future requests, Data & Knowledge Engineering, 61 (2007), 304-330.  doi: 10.1016/j.datak.2006.06.001.
    [31] P. LobaS. H. StewartR. M. Klein and J. R. Blackburn, Manipulations of the features of standard video lottery terminal (VLT) games: Effects in pathological and non-pathological gamblers, Journal of Gambling Studies, 17 (2001), 94-98. 
    [32] V.V. MacLarenJ.A. FugelsangK. Harrigan and M. Dixon, The personality of pathological gamblers: A meta-analysis, Clinical Psychology Review, 31 (2011), 1057-1067.  doi: 10.1016/j.cpr.2011.02.002.
    [33] K. Marshall, Gambling 2011, Technical Report 4,2011, http://www.statcan.gc.ca/pub/75-001-x/2011004/article/11551-eng.pdf(visited on: 04/10/2013).
    [34] S. MishraM.L. Lumiére and R.J. Williams, Gambling as a form of risk-taking: Individual differences in personality, risk-accepting attitudes, and behavioral preferences for risk, Personality and Individual Differences, 49 (2010), 616-621.  doi: 10.1016/j.paid.2010.05.032.
    [35] National Research CouncilPathological Gambling: A Critical Review, The National Academies Press, Washington D.C., 1999. 
    [36] S.R. NelsonD.A. LaPlanteA.J. PellerA. SchumannR.A. LaBrie and H.J. Shaffer, Real limits in the virtual world: Self-limiting behavior of Internet gamblers, Journal of Gambling Studies, 24 (2008), 463-477.  doi: 10.1007/s10899-008-9106-8.
    [37] J. Pallant, SPSS Survival Manual: A Step By Step Guide to Data Analysis Using SPSS, 4th edition, Allen & Unwin, Sydney, 2011.
    [38] Y. Peng, K. Gang and Y. Shi (eds. ), Knowledge-rich data mining in financial risk detection, in Computational Science - ICCS 2009 (eds. G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra and P. M. A. Sloot), Springer Berlin Heidelberg, 5545 (2009), 534-542. doi: 10.1007/978-3-642-01973-9_60.
    [39] D. T. PhamS. S. Dimov and C. D. Nguyen, Selection of k in k-means clustering, Journal of Mechanical Engineering Science, 219 (2005), 103-119.  doi: 10.1243/095440605X8298.
    [40] A. Rakhlin and A. Caponnetto (eds. ), Stability of k-means clustering, in Advances in Neural Information Processing Systems 19 (eds. B. Schölkopf, J. Platt and T. Hoffman), MIT Press, (2006), 1121-1128. http://papers.nips.cc/paper/3116-stability-of-k-means-clustering (visited on: 12/10/2014)
    [41] Responsible Gambling Council, Electronic Gaming Machines and Problem Gambling, Saskachewan Liquour and Gaming Authority, 2006, http://www.responsiblegambling.org/docs/research-reports/electronic-gaming-machines-and-problem-gambling.pdf?sfvrsn=10 (visited on: 06/28/2013).
    [42] Responsible Gambling Council, Canadian Gambling Digest 2011-2012, Technical report, 2013, http://www.responsiblegambling.org/docs/default-document-library/20130605_canadian_gambling_digest_2011-12.pdf?sfvrsn=2 (visited on: 05/04/2015).
    [43] G. Schwartz, The Impulse Economy, Atria Books, New York, 2011.
    [44] S. Seo, A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets, M. S thesis, University of Pittsburg in Pensylvania, 2006.
    [45] H.J. Shaffer and D.A. Korn, Gambling and related mental disorders: A public health analysis, Annual Review of Public Health, 23 (2002), 171-212.  doi: 10.1146/annurev.publhealth.23.100901.140532.
    [46] H.J. ShafferA.J. PellerD.A. LaPlanteS.E. Nelson and R.A. LaBrie, Toward a paradigm shift in Internet gambling research: From opinion and self-report to actual behavior, Addiction Research and Theory, 18 (2010), 270-283.  doi: 10.3109/16066350902777974.
    [47] J. Sim and C.C. Wright, Understanding interobserver agreement: The Kappa statistic, Family Medicine, 37 (2005), 360-363. 
    [48] S. H. StewartP. CollinsJ. R. BlackburnM. Ellery and R. M. Klein, Heart rate increase to alcohol administration and video lottery terminal (VLT) play among regular VLT players, Psychology of Addictive Behaviors, 19 (2005), 94-98.  doi: 10.1037/0893-164X.19.1.94.
    [49] S. Tufféry, Data Mining and Statistics for Decision Making, John Wiley & Sons, Ltd., Chichester, 2011. doi: 10.1002/9780470979174.
    [50] A.J. Viera and J.M. Garrett, The Kappa statistic in reliability studies: Use, interpretation, and sample size requirements, Journal of the American Physical Therapy Association, 85 (2005), 257-268. 
    [51] C. Wheelan, Naked Statistics: Stripping the Dread from the Data, W. W. Norton and Company, New York, 2013.
    [52] R. J. Williams, R. A. Volberg and R. M. G. Stevens, The Population Prevalence of Problem Gambling: Methodological Influences, Standardized Rates, Jurisdictional Differences, and Worldwide Trends, Technical report, 2012, https://www.uleth.ca/dspace/bitstream/handle/10133/3068/2012-PREVALENCE-OPGRC%20(2).pdf?sequence=3 (visited on: 08/12/2013).
    [53] D. S. WilsonR. A. Kauffman and M. S. Purdy, A program for at-risk high school students informed by evolutionary science, PLoS ONE, 31 (2002), 76-77.  doi: 10.1371/journal.pone.0027826.
    [54] I.H. Witten and E. Frank, Data mining: Practical machine learning tools and techniques, Newsletter: ACM SIGMOD Record Homepage archive, 31 (2002), 76-77.  doi: 10.1145/507338.507355.
    [55] Z. Xuan and H. Shaffer, How do gamblers end gambling: Longitudinal analysis of Internet gambling behaviors prior to account closure due to gambling related problems, Journal of Gambling Studies, 25 (2009), 239-252.  doi: 10.1007/s10899-009-9118-z.
  • 加载中

Figures(10)

Tables(13)

SHARE

Article Metrics

HTML views(638) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return