[1]
|
M. Che and Y. Wei, Randomized algorithms for the approximations of Tucker and the tensor train decompositions, Adv Comput Math, 45 (2019), 395-428.
doi: 10.1007/s10444-018-9622-8.
|
[2]
|
M. Cheney and B. Borden, Fundamentals of Radar Imaging, vol. 79 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2009.
doi: 10.1137/1.9780898719291.
|
[3]
|
S. Dolgov, B. Khoromskij and D. Savostyanov, Superfast Fourier transform using QTT approximation, J. Fourier Anal. Appl., 18 (2012), 915-953.
doi: 10.1007/s00041-012-9227-4.
|
[4]
|
B. P. Epps and E. M. Krivitzky, Singular value decomposition of noisy data: Noise filtering, Experiments in Fluids, 60 (2019), 1-23.
doi: 10.1007/s00348-019-2768-4.
|
[5]
|
K. Fonałand R. Zdunek, Distributed and randomized tensor train decomposition for feature extraction, in 2019 International Joint Conference on Neural Networks (IJCNN), 2019, 1-8.
|
[6]
|
M. Gilman, E. Smith and S. Tsynkov, Transionospheric Synthetic Aperture Imaging, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, Switzerland, 2017.
doi: 10.1007/978-3-319-52127-5.
|
[7]
|
M. Gilman and S. Tsynkov, A mathematical perspective on radar interferometry, Inverse Problems & Imaging, 16 (2022), 119-152.
doi: 10.3934/ipi.2021043.
|
[8]
|
X. Gong, W. Chen, J. Chen and B. Ai, Tensor denoising using low-rank tensor train decomposition, IEEE Signal Processing Letters, 27 (2020), 1685-1689.
doi: 10.1109/LSP.2020.3025038.
|
[9]
|
L. Grasedyck, Polynomial Approximation in Hierarchical Tucker Format by Vector–Tensorization, Technical Report 308, Institut für Geometrie und Praktische Mathematik RWTH Aachen, 2010.
|
[10]
|
W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal. Appl., 15 (2009), 706-722.
doi: 10.1007/s00041-009-9094-9.
|
[11]
|
N. Halko, P. G. Martinsson and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), 217-288.
doi: 10.1137/090771806.
|
[12]
|
R. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), 1-84.
|
[13]
|
B. Huber, R. Schneider and S. Wolf, A randomized tensor train singular value decomposition, in Compressed Sensing and its Applications, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2017,261-290.
|
[14]
|
S. K. Jha and R. D. S. Yadava, Denoising by singular value decomposition and its application to electronic nose data processing, IEEE Sensors Journal, 11 (2011), 35-44.
doi: 10.1109/JSEN.2010.2049351.
|
[15]
|
V. A. Kazeev, B. N. Khoromskij and E. E. Tyrtyshnikov, Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity, SIAM J. Sci. Comput., 35 (2013), A1511-A1536.
doi: 10.1137/110844830.
|
[16]
|
B. N. Khoromskij, $O(d\log N)$-quantics approximation of $N$-$d$ tensors in high-dimensional numerical modeling, Constr. Approx., 34 (2011), 257-280.
doi: 10.1007/s00365-011-9131-1.
|
[17]
|
J. Li, X.-P. Zhang and T. Tran, Point cloud denoising based on tensor tucker decomposition, in 2019 IEEE International Conference on Image Processing (ICIP), (2019), 4375-4379.
doi: 10.1109/ICIP.2019.8803602.
|
[18]
|
L. Li, W. Yu and K. Batselier, Faster tensor train decomposition for sparse data, Journal of Computational and Applied Mathematics, 405 (2022), 113972.
doi: 10.1016/j.cam.2021.113972.
|
[19]
|
Y. Nomura, K. Yamamoto, S. Anada, T. Hirayama, E. Igaki and K. Saitoh, Denoising of series electron holograms using tensor decomposition, Microscopy, 70 (2020), 255-264.
doi: 10.1093/jmicro/dfaa057.
|
[20]
|
I. V. Oseledets, Approximation of $2^d\times 2^d$ matrices using tensor decomposition, SIAM J. Matrix Anal. Appl., 31 (2009/10), 2130-2145.
doi: 10.1137/090757861.
|
[21]
|
I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing, 33 (2011), 2295-2317.
doi: 10.1137/090752286.
|
[22]
|
I. V. Oseledets, Constructive representation of functions in low-rank tensor formats, Constr. Approx., 37 (2013), 1-18.
doi: 10.1007/s00365-012-9175-x.
|
[23]
|
I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput., 31 (2009), 3744-3759.
doi: 10.1137/090748330.
|
[24]
|
I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 432 (2010), 70-88.
doi: 10.1016/j.laa.2009.07.024.
|
[25]
|
M. V. Rakhuba and I. V. Oseledets, Fast multidimensional convolution in low-rank tensor formats via cross approximation, SIAM J. Sci. Comput., 37 (2015), A565-A582.
doi: 10.1137/140958529.
|
[26]
|
T. Shi, M. Ruth and A. Townsend, Parallel algorithms for computing the tensor-train decomposition, 2021, https://arXiv.org/abs/2111.10448.
|
[27]
|
L. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), 279-311.
doi: 10.1007/BF02289464.
|