We consider solutions satisfying the Neumann zero boundary condition and a linearized mean field game system in $ \Omega \times (0, T) $, where $ \Omega $ is a bounded domain in $ \mathbb{R}^d $ and $ (0, T) $ is the time interval. We prove two kinds of stability results in determining the solutions. The first is Hölder stability in time interval $ ( \varepsilon, T) $ with arbitrarily fixed $ \varepsilon>0 $ by data of solutions in $ \Omega \times \{T\} $. The second is the Lipschitz stability in $ \Omega \times ( \varepsilon, T- \varepsilon) $ by data of solutions in arbitrarily given subdomain of $ \Omega $ over $ (0, T) $.
Citation: |
[1] |
K. A. Ames and B. Straughan, Non-standard and Improperly Posed Problems, Academic Press, an Diego, 1997.
![]() |
[2] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, vol 34, 1996, Seoul National University.
![]() ![]() |
[3] |
O. Y. Imanuvilov, Controllability of parabolic equations, Sbornik Math., 186 (1995), 879-900.
doi: 10.1070/SM1995v186n06ABEH000047.![]() ![]() ![]() |
[4] |
O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229-1245.
doi: 10.1088/0266-5611/14/5/009.![]() ![]() ![]() |
[5] |
M. V. Klibanov, The mean field games system: Carleman estimates, Lipschitz stability and uniqueness, published online in J. Inverse and Ill-posed Problems, 2023, arXiv: 2303.03928.
![]() |
[6] |
M. V. Klibanov and Y. Averboukh, Lipschitz stability estimate and uniqueness in the retrospective analysis for the mean field games system via two Carleman estimates, Preprint, arXiv: 2302.10709.
![]() |
[7] |
M. V. Klibanov, Z. Li and H. Liu, On the mean field games system with the lateral Cauchy data via Carleman estimates, Preprint, arXiv: 2303.07556.
![]() |
[8] |
M. V. Klibanov, J. Li and H. Liu, Hölder stability and uniqueness for the mean field games system via Carleman estimates, arXiv: 2304.00646.
![]() |
[9] |
J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8.![]() ![]() ![]() |
[10] |
H. Liu, C. Mou and S. Zhang, Inverse problems for mean field games, arXiv: 2205.11350.
![]() |
[11] |
H. Liu and S. Zhang, Simultaneously recovering running cost and Hamiltonian in mean field games system, arXiv: 2303.13096.
![]() |
[12] |
H. Liu and S. Zhang, On an inverse boundary problem for mean field games, arXiv: 2212.09110.
![]() |
[13] |
A. C. Murray and M. H. Protter, The asymptotic behavior of solutions of second order systems of partial differential equations,, J. Diff. Eqns., 13 (1973), 57-80.
doi: 10.1016/0022-0396(73)90032-6.![]() ![]() ![]() |
[14] |
L. E. Payne, Improperly Posed Problems in Partial Differential Equations, SIAM, Philadelphia, 1975.
![]() ![]() |
[15] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013.
doi: 10.1088/0266-5611/25/12/123013.![]() ![]() ![]() |