\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An optimization method for the inverse scattering problem of the biharmonic wave

  • *Corresponding author: Yukun Guo

    *Corresponding author: Yukun Guo
Abstract / Introduction Full Text(HTML) Figure(3) / Table(2) Related Papers Cited by
  • We consider an inverse scattering problem of reconstructing the shape of a cavity in an infinitely thin plate, where the out-of-plane displacement is governed by the two-dimensional biharmonic wave equation. We first approximate the out-of-plane displacement of the plate by potentials over an auxiliary circle and then reformulate the inverse problem into an optimization problem. The convergence properties are established to show that when the regularization parameter tends to zero, the minimizer of the optimization problem tends to a solution of the inverse scattering problem. Numerical experiments are designed to verify the performance of the proposed method.

    Mathematics Subject Classification: Primary: 65N21, 65R30; Secondary: 31A30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Illustration of the inverse scattering problem

    Figure 2.  Reconstruction of the starfish-shaped cavity subject to different observation points

    Figure 3.  Reconstruction of the kite-shaped cavity subject to different regularization parameters and the number of source points

    Table 1.  Computing time and relative errors for recovering the starfish

    $ N_r $ $ 256 $ $ 128 $ $ 64 $ $ 32 $
    CPU ($ s $) $ 146.50 $ $ 84.00 $ $ 78.09 $ $ 54.70 $
    $ E_D $ $ 9.8\% $ $ 11.50\% $ $ 12.02\% $ $ 15.94\% $
     | Show Table
    DownLoad: CSV

    Table 2.  Computing time and reconstruction errors for recovering the kite

    $ \delta $ $ 1\% $ $ 5\% $ $ 10\% $ $ 20\% $
    CPU ($ s $) $ 79.89 $ $ 83.95 $ $ 80.79 $ $ 77.08 $
    $ E_D $ $ 10.58\% $ $ 10.53\% $ $ 10.55\% $ $ 10.70\% $
     | Show Table
    DownLoad: CSV
  • [1] G. BaoP. LiJ. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse. Probl., 31 (2015), 093001.  doi: 10.1088/0266-5611/31/9/093001.
    [2] Y. Chang and Y. Guo, Simultaneous recovery of an obstacle and its excitation sources from near-field scattering data, Electronic Res. Arch., 30 (2022), 1296-1321.  doi: 10.3934/era.2022068.
    [3] Y. Chang, Y. Guo, H. Liu and D. Zhang, Recovering source location, polarization, and shape of obstacle from elastic scattering data, preprint, (2023), arXiv: 2301.02355.
    [4] B. Chen, Y. Gao, Y. Li and H. Liu, Resonant modal approximation of time-domain elastic scattering from nano-bubbles in elastic materials, preprint, (2023), arXiv: 2210.15352. doi: 10.1016/j.matpur.2022.07.007.
    [5] J. ChenZ. Chen and G. Huang, Reverse time migration for extended obstacles: Acoustic waves, Inverse Probl., 29 (2013), 085005, 17 pp.  doi: 10.1088/0266-5611/29/8/085005.
    [6] R. Chen, Y. Deng, J. Li and H. Liu, Locating multiple magnetized anomalies by geomagnetic monitoring, 2023, arXiv: 2301.12218.
    [7] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th edition, Applied Mathematical Sciences, 93. Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.
    [8] H. Dong and P. Li, A novel boundary integral formulation for the biharmonic wave scattering problem, (2023), arXiv: 2301.10142.
    [9] M. FarhatS. Guenneau and S. Enoch, Ultrabroadband elastic cloaking in thin plates, Phys. Rev. Lett., 103 (2009), 024301.  doi: 10.1103/PhysRevLett.103.024301.
    [10] Y. Gao, H. Liu and Y. Liu, On an inverse problem for the plate equation with passive measurement, (2023), arXiv: 2301.07852.
    [11] Y. Gong and X. Xu, Inverse random source problem for biharmonic equation in two dimensions, Inverse Probl. Imaging, 13 (2019), 635-652.  doi: 10.3934/ipi.2019029.
    [12] Y. GuoF. Ma and D. Zhang, An optimization method for acoustic inverse obstacle scattering problems with multiple incident waves, Inverse Problems in Science and Engineering, 19 (2011), 461-484.  doi: 10.1080/17415977.2010.518286.
    [13] X. Ji, X. Liu and Y. Xi, Direct sampling methods for inverse elastic scattering problems, \emph{Inverse Probl.}, 34 (2018), 035008, 22 pp. doi: 10.1088/1361-6420/aaa996.
    [14] Y. Jiang, H. Liu, J. Zhang and K. Zhang, Spectral patterns of elastic transmission eigenfunctions: boundary location, surface resonance and stress concentration, (2023), arXiv: 2211.16729.
    [15] A. Kirsch and R. Kress, A numerical method for an inverse scattering problem, J. Inverse Ill-Posed Probl., Notes Rep. Math. Sci. Engrg., Academic Press, Boston, MA, 4 (1987), 279-289. 
    [16] A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems, Inverse Probl., 30 (2014), 035013, 14 pp.  doi: 10.1088/0266-5611/30/3/035013.
    [17] K. KrupchykM. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 262 (2012), 1781-1801.  doi: 10.1016/j.jfa.2011.11.021.
    [18] H. LiH. Liu and J. Zou, Elastodynamical resonances and cloaking of negative material structures beyond quasistatic approximation, Stud. Appl. Math., 150 (2023), 716-754.  doi: 10.1111/sapm.12555.
    [19] P. Li and X. Wang, An inverse random source problem for the biharmonic wave equation, SIAM J. Uncertainty Quantification, 10 (2022), 949-974.  doi: 10.1137/21M1429138.
    [20] P. LiX. Yao and Y. Zhao, Stability for an inverse source problem of the biharmonic operator, SIAM J. Appl. Math., 81 (2021), 2503-2525.  doi: 10.1137/21M1407148.
    [21] X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Probl., 33 (2017), 085011, 20 pp.  doi: 10.1088/1361-6420/aa777d.
    [22] M. StengerM. Wilhelm and M. Wegener, Experiments on elastic cloaking in thin plates, Phys. Rev. Lett., 108 (2012), 014301.  doi: 10.1103/PhysRevLett.108.014301.
    [23] T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Probl. Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.
    [24] Y. Yang, Determining the first order perturbation of a bi-harmonic operator on bounded and unbounded domains from partial data, J. Differential Equations, 257 (2014), 3607-3639.  doi: 10.1016/j.jde.2014.07.003.
    [25] Y. YinW. YinP. Meng and H. Liu, On a hybrid approach for recovering multiple obstacles, Commun. Comput. Phys., 31 (2022), 869-892.  doi: 10.4208/cicp.OA-2021-0124.
  • 加载中

Figures(3)

Tables(2)

SHARE

Article Metrics

HTML views(1171) PDF downloads(239) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return