June  2002, 1(2): 135-159. doi: 10.3934/cpaa.2002.1.135

Peierls instability with electron-electron interaction: the commensurate case

1. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", Roma, I-00133, Italy

Revised  August 2001 Published  March 2002

We consider a quantum many-body model describing a system of electrons interacting with themselves and hopping from one ion to another of a one dimensional lattice. We show that the ground state energy of such system, as a functional of the ionic configurations, has local minima in correspondence of configurations described by smooth $\frac{\pi}{pF}$ periodic functions, if the interaction is repulsive and large enough and pF is the Fermi momentum of the electrons. This means physically that a $d=1$ metal develop a periodic distortion of its reticular structure (Peierls instability). The minima are found solving the Eulero-Lagrange equations of the energy by a contraction method.
Citation: V. Mastropietro. Peierls instability with electron-electron interaction: the commensurate case. Communications on Pure & Applied Analysis, 2002, 1 (2) : 135-159. doi: 10.3934/cpaa.2002.1.135
[1]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[2]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[3]

Ning Sun, Shaoyun Shi, Wenlei Li. Singular renormalization group approach to SIS problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3577-3596. doi: 10.3934/dcdsb.2020073

[4]

Florian Méhats, Olivier Pinaud. A problem of moment realizability in quantum statistical physics. Kinetic & Related Models, 2011, 4 (4) : 1143-1158. doi: 10.3934/krm.2011.4.1143

[5]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[6]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[7]

Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089

[8]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[9]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[10]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[11]

Michael Field, Ian Melbourne, Matthew Nicol, Andrei Török. Statistical properties of compact group extensions of hyperbolic flows and their time one maps. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 79-96. doi: 10.3934/dcds.2005.12.79

[12]

Vincenzo Michael Isaia. Numerical simulation of universal finite time behavior for parabolic IVP via geometric renormalization group. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3459-3481. doi: 10.3934/dcdsb.2017175

[13]

G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699

[14]

Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787

[15]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[16]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[17]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[18]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[19]

David Lubicz. On a classification of finite statistical tests. Advances in Mathematics of Communications, 2007, 1 (4) : 509-524. doi: 10.3934/amc.2007.1.509

[20]

Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]