$-h^2\Delta u+V(z)u=\lambda u^q+u^{2^{ *} -1,\mathbb R^N $
$u(z)>0\quad $ for all $z\in \mathbb R^N \qquad\qquad\qquad\qquad\qquad\qquad\qquad (P_{h})$
where $h, \lambda >0$, 1<$q$ <$2^{ * -1$ $=\frac{N+2}{N-2}$, $N\geq 3$ and $V: \mathbb R^N\to \mathbb R$ is a positive function such that
0< $i nf_{z\in\mathbb R^N}V(z)$< $limi nf_{|z| \rightarrow \infty}V(z)=V_{\infty}.$
Citation: |