December  2002, 1(4): 437-456. doi: 10.3934/cpaa.2002.1.437

Boundary spikes in the Gierer-Meinhardt system

1. 

Departamento de Ingeneria Matematica F.C.F.M., Casilla 170 Correro 3, Santiago, Chile

2. 

Departamento de Ingeneria Matematica F.C.F.M., Universidad de Chile, Casilla 170 Correro 3, Santiago, Chile

3. 

Department of Mathematical Sciences, Kent State University, Kent, OH 44242, United States

Received  January 2002 Revised  July 2002 Published  September 2002

In this paper we consider the Gierer-Meinhardt system in dimension $N=2,3$. Assuming small diffusion of the activator $\varepsilon$ « 1 and large diffusion of the inhibitor $D$ » $1/\varepsilon^N$ we show that there exists a solution to the Gierer-Meinhardt system such that the activator is concentrated at the critical point of the curvature of the domain. To establish this result we use the topological degree argument.
Citation: Manuel del Pino, Patricio Felmer, Michal Kowalczyk. Boundary spikes in the Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2002, 1 (4) : 437-456. doi: 10.3934/cpaa.2002.1.437
[1]

Juncheng Wei, Matthias Winter. On the Gierer-Meinhardt system with precursors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 363-398. doi: 10.3934/dcds.2009.25.363

[2]

Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583

[3]

Shin-Ichiro Ei, Kota Ikeda, Yasuhito Miyamoto. Dynamics of a boundary spike for the shadow Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 115-145. doi: 10.3934/cpaa.2012.11.115

[4]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[5]

Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651

[6]

Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks & Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291

[7]

Rui Peng, Xianfa Song, Lei Wei. Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4489-4505. doi: 10.3934/dcds.2017192

[8]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

[9]

Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033

[10]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[11]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[12]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[13]

Zhongwei Tang, Huafei Xie. Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (1) : 311-328. doi: 10.3934/cpaa.2020017

[14]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[15]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[16]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[17]

E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120

[18]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[19]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[20]

Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (6)

[Back to Top]