• Previous Article
    A note on the convergence in the limit of a long wave vortex density superconductivity model to the Bean model
  • CPAA Home
  • This Issue
  • Next Article
    Some existence and concentration results for nonlinear Schrödinger equations
December  2002, 1(4): 475-483. doi: 10.3934/cpaa.2002.1.475

Bifurcations of periodics from homoclinics in singular O.D.E.: applications to discretizations of travelling waves of P.D.E.

1. 

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic

2. 

Department of Mathematics and Computer Science, University of Leicester, Leicester, LE1 7RH, United Kingdom

Received  November 2001 Revised  May 2002 Published  September 2002

Bifurcations of periodic solutions from homoclinic ones are investigated for certain singularly perturbed systems of autonomous ordinary differential equations in $\mathbb R^4$. Results are applied to discretization of travelling waves of certain p.d.e.
Citation: Michal Fečkan, Vassilis Rothos. Bifurcations of periodics from homoclinics in singular O.D.E.: applications to discretizations of travelling waves of P.D.E.. Communications on Pure & Applied Analysis, 2002, 1 (4) : 475-483. doi: 10.3934/cpaa.2002.1.475
[1]

John R. King, Judith Pérez-Velázquez, H.M. Byrne. Singular travelling waves in a model for tumour encapsulation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 195-230. doi: 10.3934/dcds.2009.25.195

[2]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[3]

Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573

[4]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[5]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[6]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[7]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[8]

Christian Lax, Sebastian Walcher. Singular perturbations and scaling. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 1-29. doi: 10.3934/dcdsb.2019170

[9]

Pablo Amster, Mariel Paula Kuna, Gonzalo Robledo. Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1695-1709. doi: 10.3934/cpaa.2019080

[10]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[11]

Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036

[12]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[13]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[14]

Zongming Guo, Juncheng Wei. Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (4) : 765-786. doi: 10.3934/cpaa.2008.7.765

[15]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[16]

G. A. Athanassoulis, K. A. Belibassakis. New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth. Conference Publications, 2007, 2007 (Special) : 75-84. doi: 10.3934/proc.2007.2007.75

[17]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Multiple travelling waves for an $SI$-epidemic model. Networks & Heterogeneous Media, 2013, 8 (1) : 171-190. doi: 10.3934/nhm.2013.8.171

[18]

S. Jacquir, S. Binczak, J. P. Gauthier, J. M. Bilbault. Emergence of travelling waves in smooth nerve fibres. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 263-272. doi: 10.3934/dcdss.2008.1.263

[19]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[20]

Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]