• Previous Article
    Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics
  • CPAA Home
  • This Issue
  • Next Article
    Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains
March  2002, 1(1): 51-76. doi: 10.3934/cpaa.2002.1.51

Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits


School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India


Centre de Mathématiques Appliquées, and Centre National de la Recherche Scientifique, UMR. 7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Received  August 2001 Published  December 2001

This paper is concerned with the boundary layers that arise in solutions of a nonlinear hyperbolic system of conservation laws in presence of vanishing diffusion. We consider self-similar solutions of the Riemann problem in a half-space, following a pioneering idea by Dafermos for the standard Riemann problem. The system is strictly hyperbolic but no assumption of genuine nonlinearity is made; moreover, the boundary is possibly characteristic, that is, the wave speed do not have a specific sign near the (stationary) boundary.
First, we generalize a technique due to Tzavaras and show that the boundary Riemann problem with diffusion admits a family of continuous solutions that remain uniformly bounded in the total variation norm. Careful estimates are necessary to cope with waves that collapse at the boundary and generate the boundary layer.
Second, we prove the convergence of these continuous solutions toward weak solutions of the Riemann problem when the diffusion parameter approaches zero. Following Dubois and LeFloch, we formulate the boundary condition in a weak form, based on a set of admissible boundary traces. Following Part I of this work, we identify and rigorously analyze the boundary set associated with the zero-diffusion method. In particular, our analysis fully justifies the use of the scaling $1/\varepsilon$ near the boundary (where $\varepsilon$ is the diffusion parameter), even in the characteristic case as advocated in Part I by the authors.
Citation: K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313


L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799


Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471


Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002


Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801


Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817


Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47


Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323


Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198


Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401


Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036


D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685


G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131


Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101


Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857


F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91


Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897


Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168


Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703


Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

2020 Impact Factor: 1.916


  • PDF downloads (59)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]