• Previous Article
    Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —
  • CPAA Home
  • This Issue
  • Next Article
    Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data
June  2003, 2(2): 187-209. doi: 10.3934/cpaa.2003.2.187

Attractors in continuous –time switching networks


Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, United States

Received  February 2002 Revised  January 2003 Published  March 2003

We consider a system of equations with discontinuous right hand side, which arise as models of gene and neural networks. We study attractors in $R^4$ which lie in a set of orthants in the form of figure eight. We find that if the attractor is symmetric with respect to these two loops, then the only possible attractor is a periodic orbit which traverses both loops once. We show that without the symmetry the set of admissible attractors include periodic orbits which follow one loop $k$ times and other loop once, for any $k$. However, we also show that no trajectory in an attractor can traverse both loops more then once in a row.
Citation: Tomáš Gedeon. Attractors in continuous –time switching networks. Communications on Pure and Applied Analysis, 2003, 2 (2) : 187-209. doi: 10.3934/cpaa.2003.2.187

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial and Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283


Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou. Influence prediction for continuous-time information propagation on networks. Networks and Heterogeneous Media, 2018, 13 (4) : 567-583. doi: 10.3934/nhm.2018026


Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control and Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002


Meiyu Sui, Yejuan Wang, Peter E. Kloeden. Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays. Electronic Research Archive, 2021, 29 (2) : 2187-2221. doi: 10.3934/era.2020112


Simone Göttlich, Stephan Martin, Thorsten Sickenberger. Time-continuous production networks with random breakdowns. Networks and Heterogeneous Media, 2011, 6 (4) : 695-714. doi: 10.3934/nhm.2011.6.695


Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166


Ying Sue Huang. Resynchronization of delayed neural networks. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397


Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115


Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410


Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, 2021, 29 (5) : 2973-2985. doi: 10.3934/era.2021022


Joon Kwon, Panayotis Mertikopoulos. A continuous-time approach to online optimization. Journal of Dynamics and Games, 2017, 4 (2) : 125-148. doi: 10.3934/jdg.2017008


Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control and Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475


Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139


Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329


Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200


Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827


Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357


Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2537-2559. doi: 10.3934/dcdss.2020137


Yong Zhao, Shanshan Ren. Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales. Electronic Research Archive, 2021, 29 (5) : 3323-3340. doi: 10.3934/era.2021041


Juan Cao, Fengli Ren, Dacheng Zhou. Asymptotic and finite-time cluster synchronization of neural networks via two different controllers. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022005

2020 Impact Factor: 1.916


  • PDF downloads (94)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]