• Previous Article
    Examinations on a three-dimensional differentiable vector field that equals its own curl
  • CPAA Home
  • This Issue
  • Next Article
    Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —
June  2003, 2(2): 233-249. doi: 10.3934/cpaa.2003.2.233

Some results about a bidimensional version of the generalized BO

1. 

Departamento de Matematica, IMECC-UNICAMP, 13081-970, Campinas, SP, Brazil

Received  February 2002 Revised  January 2003 Published  March 2003

For the bidimensional version of the generalized Benjamin-Ono equation:

$u_t-H^{(x)}u_{x y}+u^p u_y=0, \quad t\in \mathbb R,\quad (x,y)\in \mathbb R^2,$

we use the method of parabolic regularization to prove local well-posedness in the spaces $H^s(\mathbb R^2), \quad s>2$ and in the weighted spaces $\mathcal F_r^s=H^s(\mathbb R^2) \cap L^2((1+x^2+y^2)^rdxdy), \quad s>2,\quad r\in [0,1]$ and $\mathcal F_{1,k}^k=H^k(\mathbb R^2) \cap L^2((1+x^2+y^{2k})dxdy), \quad k\in\mathbb N, \quad k\geq 3. \quad $ As in the case of BO there is lack of persistence for both the linear and nonlinear equations (for $p$ odd) in $\mathcal F_2^s$. That leads to unique continuation principles in a natural way. By standard methods based on $L^p-L^q$ estimates of the associated group we obtain global well-posedness for small initial data and nonlinear scattering for $p\geq 3,\quad s>3$. Nonexistence of square integrable solitary waves of the form $u(x,y,t)=v(x,y-ct),\quad c>0, \quad p\in \{1,2\}$ is obtained using the results about existence of solitary waves of the BO and variational methods.

Citation: Aniura Milanés. Some results about a bidimensional version of the generalized BO. Communications on Pure & Applied Analysis, 2003, 2 (2) : 233-249. doi: 10.3934/cpaa.2003.2.233
[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[2]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[3]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[5]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[6]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[7]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[8]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[9]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[10]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[11]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[12]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[13]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[14]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[15]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[16]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

[17]

Sabyasachi Dey, Tapabrata Roy, Santanu Sarkar. Revisiting design principles of Salsa and ChaCha. Advances in Mathematics of Communications, 2019, 13 (4) : 689-704. doi: 10.3934/amc.2019041

[18]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[19]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[20]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]