• Previous Article
    Examinations on a three-dimensional differentiable vector field that equals its own curl
  • CPAA Home
  • This Issue
  • Next Article
    Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —
June  2003, 2(2): 233-249. doi: 10.3934/cpaa.2003.2.233

Some results about a bidimensional version of the generalized BO

1. 

Departamento de Matematica, IMECC-UNICAMP, 13081-970, Campinas, SP, Brazil

Received  February 2002 Revised  January 2003 Published  March 2003

For the bidimensional version of the generalized Benjamin-Ono equation:

$u_t-H^{(x)}u_{x y}+u^p u_y=0, \quad t\in \mathbb R,\quad (x,y)\in \mathbb R^2,$

we use the method of parabolic regularization to prove local well-posedness in the spaces $H^s(\mathbb R^2), \quad s>2$ and in the weighted spaces $\mathcal F_r^s=H^s(\mathbb R^2) \cap L^2((1+x^2+y^2)^rdxdy), \quad s>2,\quad r\in [0,1]$ and $\mathcal F_{1,k}^k=H^k(\mathbb R^2) \cap L^2((1+x^2+y^{2k})dxdy), \quad k\in\mathbb N, \quad k\geq 3. \quad $ As in the case of BO there is lack of persistence for both the linear and nonlinear equations (for $p$ odd) in $\mathcal F_2^s$. That leads to unique continuation principles in a natural way. By standard methods based on $L^p-L^q$ estimates of the associated group we obtain global well-posedness for small initial data and nonlinear scattering for $p\geq 3,\quad s>3$. Nonexistence of square integrable solitary waves of the form $u(x,y,t)=v(x,y-ct),\quad c>0, \quad p\in \{1,2\}$ is obtained using the results about existence of solitary waves of the BO and variational methods.

Citation: Aniura Milanés. Some results about a bidimensional version of the generalized BO. Communications on Pure & Applied Analysis, 2003, 2 (2) : 233-249. doi: 10.3934/cpaa.2003.2.233
[1]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[2]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[3]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[4]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[5]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[6]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[7]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[8]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[9]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[10]

Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689

[11]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[12]

Luc Molinet, Francis Ribaud. Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295

[13]

Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1177-1203. doi: 10.3934/cpaa.2019057

[14]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[15]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[16]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[17]

Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185

[18]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262

[19]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[20]

José R. Quintero. Nonlinear stability of solitary waves for a 2-d Benney--Luke equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 203-218. doi: 10.3934/dcds.2005.13.203

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]