March  2003, 2(1): 33-50. doi: 10.3934/cpaa.2003.2.33

Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm

1. 

University of Toronto, Toronto, Ontario, M5S 2E4, Canada

2. 

University of Minnesota, United States

3. 

Massachusetts Institute of Technology

4. 

Kobe University, Japan

5. 

University of California, Los Angeles, United States

Received  December 2002 Published  December 2002

We continue the study (initiated in [18]) of the orbital stability of the ground state cylinder for focussing non-linear Schrödinger equations in the $H^s(\R^n)$ norm for $1-\varepsilon < s < 1$, for small $\varepsilon$. In the $L^2$-subcritical case we obtain a polynomial bound for the time required to move away from the ground state cylinder. If one is only in the $H^1$-subcritical case then we cannot show this, but for defocussing equations we obtain global well-posedness and polynomial growth of $H^s$ norms for $s$ sufficiently close to 1.
Citation: J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm. Communications on Pure & Applied Analysis, 2003, 2 (1) : 33-50. doi: 10.3934/cpaa.2003.2.33
[1]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[2]

F. Catoire, W. M. Wang. Bounds on Sobolev norms for the defocusing nonlinear Schrödinger equation on general flat tori. Communications on Pure & Applied Analysis, 2010, 9 (2) : 483-491. doi: 10.3934/cpaa.2010.9.483

[3]

Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341

[4]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[5]

Joackim Bernier. Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on $ h\mathbb{Z} $. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3179-3195. doi: 10.3934/dcds.2019131

[6]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[7]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[8]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[9]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[10]

Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103

[11]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[12]

Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389

[13]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm. Discrete & Continuous Dynamical Systems, 2003, 9 (1) : 31-54. doi: 10.3934/dcds.2003.9.31

[14]

José Manuel Palacios. Orbital and asymptotic stability of a train of peakons for the Novikov equation. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2475-2518. doi: 10.3934/dcds.2020372

[15]

Vedran Sohinger. Bounds on the growth of high Sobolev norms of solutions to 2D Hartree equations. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3733-3771. doi: 10.3934/dcds.2012.32.3733

[16]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[17]

Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729

[18]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[19]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[20]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (5)

[Back to Top]