• Previous Article
    On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations
  • CPAA Home
  • This Issue
  • Next Article
    Multiple solutions with changing sign energy to a nonlinear elliptic equation
June  2004, 3(2): 267-290. doi: 10.3934/cpaa.2004.3.267

Effects of small viscosity and far field boundary conditions for hyperbolic systems


Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan


IPST and Department of Mathematics, University of Maryland, College Park, MD 20742


Department of Mathematics, California State University, Long Beach, CA 90840, United States

Received  April 2003 Revised  January 2004 Published  March 2004

In this paper we study the effects of small viscosity term and the far-field boundary conditions for systems of convection-diffusion equations in the zero viscosity limit. The far-field boundary conditions are classified and the corresponding solution structures are analyzed. It is confirmed that the Neumann type of far-field boundary condition is preferred. On the other hand, we also identify a class of improperly coupled boundary conditions which lead to catastrophic reflection waves dominating the inlet in the zero viscosity limit. The analysis is performed on the linearized convection-diffusion model which well describes the behavior at the far field for many physical and engineering systems such as fluid dynamical equations and electro-magnetic equations. The results obtained here should provide some theoretical guidance for designing effective far field boundary conditions.
Citation: Huey-Er Lin, Jian-Guo Liu, Wen-Qing Xu. Effects of small viscosity and far field boundary conditions for hyperbolic systems. Communications on Pure & Applied Analysis, 2004, 3 (2) : 267-290. doi: 10.3934/cpaa.2004.3.267

Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309


Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015


Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331


Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11


Wei-Xi Li, Rui Xu. Well-posedness in Sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity. Electronic Research Archive, 2021, 29 (6) : 4243-4255. doi: 10.3934/era.2021082


Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669


Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068


Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic & Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001


Fucai Li, Zhipeng Zhang. Zero viscosity-resistivity limit for the 3D incompressible magnetohydrodynamic equations in Gevrey class. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4279-4304. doi: 10.3934/dcds.2018187


M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473


Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic & Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008


Iryna Pankratova, Andrey Piatnitski. Homogenization of convection-diffusion equation in infinite cylinder. Networks & Heterogeneous Media, 2011, 6 (1) : 111-126. doi: 10.3934/nhm.2011.6.111


Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control & Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761


Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Jürgen Sprekels. A vanishing diffusion limit in a nonstandard system of phase field equations. Evolution Equations & Control Theory, 2014, 3 (2) : 257-275. doi: 10.3934/eect.2014.3.257


Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami, Johannes Lankeit. The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6529-6546. doi: 10.3934/dcds.2020289


Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070


Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations & Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005


Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609


Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623


Hongjie Dong, Yan Guo, Timur Yastrzhembskiy. Kinetic Fokker-Planck and Landau equations with specular reflection boundary condition. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2022003

2020 Impact Factor: 1.916


  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]