• Previous Article
    On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations
  • CPAA Home
  • This Issue
  • Next Article
    Multiple solutions with changing sign energy to a nonlinear elliptic equation
June  2004, 3(2): 267-290. doi: 10.3934/cpaa.2004.3.267

Effects of small viscosity and far field boundary conditions for hyperbolic systems

1. 

Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan

2. 

IPST and Department of Mathematics, University of Maryland, College Park, MD 20742

3. 

Department of Mathematics, California State University, Long Beach, CA 90840, United States

Received  April 2003 Revised  January 2004 Published  March 2004

In this paper we study the effects of small viscosity term and the far-field boundary conditions for systems of convection-diffusion equations in the zero viscosity limit. The far-field boundary conditions are classified and the corresponding solution structures are analyzed. It is confirmed that the Neumann type of far-field boundary condition is preferred. On the other hand, we also identify a class of improperly coupled boundary conditions which lead to catastrophic reflection waves dominating the inlet in the zero viscosity limit. The analysis is performed on the linearized convection-diffusion model which well describes the behavior at the far field for many physical and engineering systems such as fluid dynamical equations and electro-magnetic equations. The results obtained here should provide some theoretical guidance for designing effective far field boundary conditions.
Citation: Huey-Er Lin, Jian-Guo Liu, Wen-Qing Xu. Effects of small viscosity and far field boundary conditions for hyperbolic systems. Communications on Pure and Applied Analysis, 2004, 3 (2) : 267-290. doi: 10.3934/cpaa.2004.3.267
[1]

Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309

[2]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[3]

Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331

[4]

Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11

[5]

Wei-Xi Li, Rui Xu. Well-posedness in Sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity. Electronic Research Archive, 2021, 29 (6) : 4243-4255. doi: 10.3934/era.2021082

[6]

Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669

[7]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[8]

Razvan C. Fetecau, Hui Huang, Daniel Messenger, Weiran Sun. Zero-diffusion limit for aggregation equations over bounded domains. Discrete and Continuous Dynamical Systems, 2022, 42 (10) : 4905-4936. doi: 10.3934/dcds.2022078

[9]

Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001

[10]

Fucai Li, Zhipeng Zhang. Zero viscosity-resistivity limit for the 3D incompressible magnetohydrodynamic equations in Gevrey class. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4279-4304. doi: 10.3934/dcds.2018187

[11]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[12]

Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic and Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008

[13]

Iryna Pankratova, Andrey Piatnitski. Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6 (1) : 111-126. doi: 10.3934/nhm.2011.6.111

[14]

Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control and Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761

[15]

Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Jürgen Sprekels. A vanishing diffusion limit in a nonstandard system of phase field equations. Evolution Equations and Control Theory, 2014, 3 (2) : 257-275. doi: 10.3934/eect.2014.3.257

[16]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami, Johannes Lankeit. The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6529-6546. doi: 10.3934/dcds.2020289

[17]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[18]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations and Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005

[19]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

[20]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]