-
Previous Article
Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights
- CPAA Home
- This Issue
-
Next Article
Persistent regional null contrillability for a class of degenerate parabolic equations
Spatial homogeneity in parabolic problems with nonlinear boundary conditions
1. | Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Caixa postal 668, 13560-970 São Carlos, São Paulo, Brazil |
2. | Departamento de Matemática, Universidade Estadual de Maringá, 87020-900 Maringá, Paraná, Brazil |
[1] |
Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2079-2088. doi: 10.3934/dcds.2012.32.2079 |
[2] |
Alexey G. Mazko. Positivity, robust stability and comparison of dynamic systems. Conference Publications, 2011, 2011 (Special) : 1042-1051. doi: 10.3934/proc.2011.2011.1042 |
[3] |
Bernold Fiedler, Carlos Rocha. Nonlinear Sturm global attractors: Unstable manifold decompositions as regular CW-complexes. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5099-5122. doi: 10.3934/dcds.2014.34.5099 |
[4] |
Arrigo Cellina, Carlo Mariconda, Giulia Treu. Comparison results without strict convexity. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 57-65. doi: 10.3934/dcdsb.2009.11.57 |
[5] |
George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189 |
[6] |
Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305 |
[7] |
Siegfried Carl. Comparison results for a class of quasilinear evolutionary hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 221-229. doi: 10.3934/proc.2007.2007.221 |
[8] |
Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 |
[9] |
Julián López-Gómez, Paul H. Rabinowitz. The effects of spatial heterogeneities on some multiplicity results. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 941-952. doi: 10.3934/dcds.2016.36.941 |
[10] |
Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981 |
[11] |
Michał Jóźwikowski, Witold Respondek. A comparison of vakonomic and nonholonomic dynamics with applications to non-invariant Chaplygin systems. Journal of Geometric Mechanics, 2019, 11 (1) : 77-122. doi: 10.3934/jgm.2019005 |
[12] |
Vittorino Pata. Two questions arising in the theory of attractors. Evolution Equations and Control Theory, 2019, 8 (3) : 663-668. doi: 10.3934/eect.2019031 |
[13] |
Thi-Bich-Ngoc Mac. Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3013-3027. doi: 10.3934/dcdsb.2015.20.3013 |
[14] |
Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483 |
[15] |
Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209 |
[16] |
Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323 |
[17] |
Leonardo Mora. Homoclinic bifurcations, fat attractors and invariant curves. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1133-1148. doi: 10.3934/dcds.2003.9.1133 |
[18] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579 |
[19] |
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 |
[20] |
Andy Hammerlindl, Bernd Krauskopf, Gemma Mason, Hinke M. Osinga. Determining the global manifold structure of a continuous-time heterodimensional cycle. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022008 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]