• Previous Article
    Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian
  • CPAA Home
  • This Issue
  • Next Article
    Compressible Navier-Stokes equations with vacuum state in one dimension
December  2004, 3(4): 695-727. doi: 10.3934/cpaa.2004.3.695

Eventual compactness for semiflows generated by nonlinear age-structured models

1. 

Department of Mathematics, Université du Havre, 76058 Le Havre, France

2. 

Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, United States

Received  November 2003 Revised  June 2004 Published  September 2004

In this paper we investigate compactness properties for a semiflow generated by a semi-linear equation with non-dense domain. We start with the non-homogeneous linear case, and we derive some abstract conditions for non-autonomous semilinear equations. Then we investigate a special situation which is well adapted for age-structured equations. We conclude the paper by applying the abstract results to an age-structured model with an additional structure.
Citation: P. Magal, H. R. Thieme. Eventual compactness for semiflows generated by nonlinear age-structured models. Communications on Pure & Applied Analysis, 2004, 3 (4) : 695-727. doi: 10.3934/cpaa.2004.3.695
[1]

Yicang Zhou, Paolo Fergola. Dynamics of a discrete age-structured SIS models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 841-850. doi: 10.3934/dcdsb.2004.4.841

[2]

Zhihua Liu, Rong Yuan. Takens–Bogdanov singularity for age structured models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019201

[3]

Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409

[4]

Zhihua Liu, Pierre Magal, Shigui Ruan. Oscillations in age-structured models of consumer-resource mutualisms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 537-555. doi: 10.3934/dcdsb.2016.21.537

[5]

Andrea Franceschetti, Andrea Pugliese, Dimitri Breda. Multiple endemic states in age-structured $SIR$ epidemic models. Mathematical Biosciences & Engineering, 2012, 9 (3) : 577-599. doi: 10.3934/mbe.2012.9.577

[6]

Zhilan Feng, Qing Han, Zhipeng Qiu, Andrew N. Hill, John W. Glasser. Computation of $\mathcal R $ in age-structured epidemiological models with maternal and temporary immunity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 399-415. doi: 10.3934/dcdsb.2016.21.399

[7]

Yingli Pan, Ying Su, Junjie Wei. Bistable waves of a recursive system arising from seasonal age-structured population models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 511-528. doi: 10.3934/dcdsb.2018184

[8]

B. San Martín, Kendry J. Vivas. Asymptotically sectional-hyperbolic attractors. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4057-4071. doi: 10.3934/dcds.2019163

[9]

Fadia Bekkal-Brikci, Khalid Boushaba, Ovide Arino. Nonlinear age structured model with cannibalism. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 201-218. doi: 10.3934/dcdsb.2007.7.201

[10]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[11]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[12]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[13]

Ryszard Rudnicki, Radosław Wieczorek. On a nonlinear age-structured model of semelparous species. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2641-2656. doi: 10.3934/dcdsb.2014.19.2641

[14]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

[15]

Jacek Banasiak, Aleksandra Falkiewicz. A singular limit for an age structured mutation problem. Mathematical Biosciences & Engineering, 2017, 14 (1) : 17-30. doi: 10.3934/mbe.2017002

[16]

Mohammed Nor Frioui, Tarik Mohammed Touaoula, Bedreddine Ainseba. Global dynamics of an age-structured model with relapse. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019226

[17]

Hongyong Cui. Convergences of asymptotically autonomous pullback attractors towards semigroup attractors. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3525-3535. doi: 10.3934/dcdsb.2018276

[18]

A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251

[19]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[20]

Xi Huo. Modeling of contact tracing in epidemic populations structured by disease age. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1685-1713. doi: 10.3934/dcdsb.2015.20.1685

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]