December  2004, 3(4): 791-808. doi: 10.3934/cpaa.2004.3.791

Convergence of generalized proximal point algorithms

1. 

Dipartimento di Matematica, Universita della Calabria, 87036 Arcavacata di Rende (Cs), Italy

2. 

School of Mathematical Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

Received  January 2004 Revised  July 2004 Published  September 2004

Weak and strong convergence for some generalized proximal point algorithms are proved. These algorithms include the Eckstein and Bertsekas generalized proximal point algorithm, a contraction-proximal point algorithm, and inexact proximal point algorithms. Convergence rate is also considered.
Citation: Giuseppe Marino, Hong-Kun Xu. Convergence of generalized proximal point algorithms. Communications on Pure and Applied Analysis, 2004, 3 (4) : 791-808. doi: 10.3934/cpaa.2004.3.791
[1]

Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381

[2]

Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027

[3]

Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial and Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153

[4]

Ouafa Belguidoum, Hassina Grar. An improved projection algorithm for variational inequality problem with multivalued mapping. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022002

[5]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[6]

Guoyong Gu, Junfeng Yang. A unified and tight linear convergence analysis of the relaxed proximal point algorithm. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022107

[7]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[8]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[9]

Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004

[10]

Chengjin Li. Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 511-520. doi: 10.3934/naco.2020048

[11]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[12]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[13]

Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure and Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547

[14]

Chunming Tang, Jinbao Jian, Guoyin Li. A proximal-projection partial bundle method for convex constrained minimax problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 757-774. doi: 10.3934/jimo.2018069

[15]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[16]

Luca Lussardi, Stefano Marini, Marco Veneroni. Stochastic homogenization of maximal monotone relations and applications. Networks and Heterogeneous Media, 2018, 13 (1) : 27-45. doi: 10.3934/nhm.2018002

[17]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[18]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[19]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial and Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

[20]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (353)
  • HTML views (0)
  • Cited by (90)

Other articles
by authors

[Back to Top]