-
Previous Article
Asymptotic behavior of a parabolic-hyperbolic system
- CPAA Home
- This Issue
-
Next Article
Convergence of generalized proximal point algorithms
Problems on electrorheological fluid flows
1. | Department of Mathematics, University of Houston, Houston, TX 77204-3008, United States |
2. | Institute of Mathematics, University of Augsburg, D-86159 Augsburg, Germany |
[1] |
Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335 |
[2] |
J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177 |
[3] |
W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure and Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247 |
[4] |
W. G. Litvinov, R. H.W. Hoppe. Coupled problems on stationary non-isothermal flow of electrorheological fluids. Communications on Pure and Applied Analysis, 2005, 4 (4) : 779-803. doi: 10.3934/cpaa.2005.4.779 |
[5] |
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 |
[6] |
Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179 |
[7] |
Mingxin Wang. Erratum: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021269 |
[8] |
M.J. Lopez-Herrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 1015-1024. doi: 10.3934/proc.2011.2011.1015 |
[9] |
R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211 |
[10] |
Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243 |
[11] |
Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 511-532. doi: 10.3934/dcdss.2018028 |
[12] |
John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multi-point boundary value problems. Conference Publications, 2013, 2013 (special) : 273-281. doi: 10.3934/proc.2013.2013.273 |
[13] |
Lingju Kong, Qingkai Kong. Existence of nodal solutions of multi-point boundary value problems. Conference Publications, 2009, 2009 (Special) : 457-465. doi: 10.3934/proc.2009.2009.457 |
[14] |
Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513 |
[15] |
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515 |
[16] |
Xiao-Yu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear two-point boundary value problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 31-43. doi: 10.3934/naco.2012.2.31 |
[17] |
Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107 |
[18] |
Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213 |
[19] |
Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 51-68. doi: 10.3934/jgm.2010.2.51 |
[20] |
Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]