March  2005, 4(1): 115-142. doi: 10.3934/cpaa.2005.4.115

Trajectory and global attractors of dissipative hyperbolic equations with memory

1. 

Institute for Problems of Information Transmission, Russian Academy of Sciences, Bolshoy Karetniy 19, Moscow 101447, GSP-4, Russian Federation

2. 

Laboratoire d'Applications des Mathématiques - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, Chasseneuil Futuroscope Cedex

Received  January 2004 Revised  August 2004 Published  December 2004

We consider in this article a general construction of trajectory attractors and global attractors of evolution equations with memory. In our approach, the corresponding dynamical system acts in the space of initial data of the Cauchy problem under study; we can note that, in previous studies, the so-called history space setting was introduced and the study of global attractors was made in an extended phase space.
As an application, we construct trajectory and global attractors for dissipative hyperbolic equations with linear memory. We also prove the existence of a global Lyapunov function for the dissipative hyperbolic equation with memory. The existence of such a Lyapunov function implies a regular structure for the trajectory and global attractors of the equation under consideration.
Citation: V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure and Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115
[1]

Monica Conti, Vittorino Pata, M. Squassina. Singular limit of dissipative hyperbolic equations with memory. Conference Publications, 2005, 2005 (Special) : 200-208. doi: 10.3934/proc.2005.2005.200

[2]

Alfredo Lorenzi, Eugenio Sinestrari. Identifying a BV-kernel in a hyperbolic integrodifferential equation. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1199-1219. doi: 10.3934/dcds.2008.21.1199

[3]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure and Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[4]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[5]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[6]

Boling Guo, Zhengde Dai. Attractor for the dissipative Hamiltonian amplitude equation governing modulated wave instabilities. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 783-793. doi: 10.3934/dcds.1998.4.783

[7]

Shengfan Zhou, Jinwu Huang, Xiaoying Han. Compact kernel sections for dissipative non-autonomous Zakharov equation on infinite lattices. Communications on Pure and Applied Analysis, 2010, 9 (1) : 193-210. doi: 10.3934/cpaa.2010.9.193

[8]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[9]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022046

[10]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations and Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[11]

Gabriel Deugoue. Approximation of the trajectory attractor of the 3D MHD System. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2119-2144. doi: 10.3934/cpaa.2013.12.2119

[12]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[13]

Vladimir V. Chepyzhov. Trajectory attractors for non-autonomous dissipative 2d Euler equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 811-832. doi: 10.3934/dcdsb.2015.20.811

[14]

Kais Ammari, Eduard Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4371-4388. doi: 10.3934/dcds.2014.34.4371

[15]

Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077

[16]

Xiuqing Wang, Yuming Qin, Alain Miranville. Approximation of the trajectory attractor of the 3D smectic-A liquid crystal flow equations. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3805-3827. doi: 10.3934/cpaa.2020168

[17]

Ciprian G. Gal, T. Tachim Medjo. Approximation of the trajectory attractor for a 3D model of incompressible two-phase-flows. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2229-2252. doi: 10.3934/cpaa.2014.13.2229

[18]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[19]

Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533

[20]

Jia-Cheng Zhao, Zhong-Xin Ma. Global attractor for a partly dissipative reaction-diffusion system with discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022103

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]