-
Previous Article
Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation
- CPAA Home
- This Issue
-
Next Article
On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian
Existence of steady flows of slightly compressible viscoelastic fluids of White-Metzner type around an obstacle
1. | Laboratoire d'Analyse et de Mathématiques appliquées, CNRS et Université Paris XII -- Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France |
2. | Mathématiques, Faculté des Sciences et Techniques de Guéliz, B.P. 549, Avenue Abdelkrim Elkhattabi, Marrakech, Morocco |
3. | Mathématiques, Faculté des Sciences Section 1, Université libanaise, Beyrouth, Lebanon |
[1] |
Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001 |
[2] |
Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107 |
[3] |
Jinqiao Duan, Vincent J. Ervin, Daniel Schertzer. Dispersion in flows with obstacles and uncertainty. Conference Publications, 2001, 2001 (Special) : 131-136. doi: 10.3934/proc.2001.2001.131 |
[4] |
Wenjing Zhao. Weak-strong uniqueness of incompressible magneto-viscoelastic flows. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2907-2917. doi: 10.3934/cpaa.2020127 |
[5] |
Wen-Ching Lien, Yu-Yu Liu, Chen-Chang Peng. Smooth Transonic Flows Around Cones. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022028 |
[6] |
W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004 |
[7] |
Zaynab Salloum. Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 625-642. doi: 10.3934/cpaa.2010.9.625 |
[8] |
M. Bulíček, P. Kaplický. Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 41-50. doi: 10.3934/dcdss.2008.1.41 |
[9] |
Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437 |
[10] |
Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084 |
[11] |
Eduard Feireisl, Antonín Novotný. Two phase flows of compressible viscous fluids. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2215-2232. doi: 10.3934/dcdss.2022091 |
[12] |
Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497 |
[13] |
Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure and Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036 |
[14] |
Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193 |
[15] |
Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 |
[16] |
Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565 |
[17] |
Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917 |
[18] |
Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 237-253. doi: 10.3934/dcdss.2010.3.237 |
[19] |
Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1415-1428. doi: 10.3934/cpaa.2008.7.1415 |
[20] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure and Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]