September  2005, 4(3): 569-588. doi: 10.3934/cpaa.2005.4.569

Some remarks on the $L^p-L^q$ boundedness of trigonometric sums and oscillatory integrals

1. 

Dipartimento di Matematica Pura e Applicata, Università di L'Aquila, 67100 Coppito, Italy

Received  September 2004 Revised  February 2005 Published  June 2005

We discuss the asymptotic behaviour for the best constant in $L^p$-$L^q$ estimates for trigonometric polynomials and for an integral operator which is related to the solution of inhomogeneous Schrödinger equations. This gives us an opportunity to review some basic facts about oscillatory integrals and the method of stationary phase, and also to make some remarks in connection with Strichartz estimates.
Citation: Damiano Foschi. Some remarks on the $L^p-L^q$ boundedness of trigonometric sums and oscillatory integrals. Communications on Pure & Applied Analysis, 2005, 4 (3) : 569-588. doi: 10.3934/cpaa.2005.4.569
[1]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[2]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[3]

Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143

[4]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

[5]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[6]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[7]

Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061

[8]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[9]

Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221

[10]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[11]

Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134

[12]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[13]

Ping-Liang Huang, Youde Wang. Periodic solutions of inhomogeneous Schrödinger flows into 2-sphere. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1775-1795. doi: 10.3934/dcdss.2016074

[14]

Gong Chen. Strichartz estimates for charge transfer models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1201-1226. doi: 10.3934/dcds.2017050

[15]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[16]

Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023

[17]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[18]

Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883

[19]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

[20]

Elena Cordero, Fabio Nicola, Luigi Rodino. Schrödinger equations with rough Hamiltonians. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4805-4821. doi: 10.3934/dcds.2015.35.4805

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]