• Previous Article
    Exponential stability in $H^4$ for the Navier--Stokes equations of compressible and heat conductive fluid
  • CPAA Home
  • This Issue
  • Next Article
    On certain nonlinear parabolic equations with singular diffusion and data in $L^1$
September  2005, 4(3): 613-634. doi: 10.3934/cpaa.2005.4.613

New dissipated energies for the thin fluid film equation

1. 

Department of Mathematics, University of Illinois, Urbana, IL 61801, United States

Received  September 2004 Revised  January 2005 Published  June 2005

The thin fluid film evolution $h_t = -(h^n h_{x x x})_x$ is known to conserve the fluid volume $\int h dx$ and to dissipate the "energies" $\int h^{1.5-n} dx$ and $\int h_x^2 dx$. We extend this last result by showing the energy $\int h^p h_x^2 dx$ is dissipated for some values of $p < 0$, when $\frac{1}{2} < n < 3$. For example when $n=1$, the Hele-Shaw equation $h_t = -(h h_{x x x})_x$ dissipates $\int h^{-1/2} h_x^2 dx$.
Citation: Richard S. Laugesen. New dissipated energies for the thin fluid film equation. Communications on Pure and Applied Analysis, 2005, 4 (3) : 613-634. doi: 10.3934/cpaa.2005.4.613
[1]

Marina Chugunova, Roman M. Taranets. New dissipated energy for the unstable thin film equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 613-624. doi: 10.3934/cpaa.2011.10.613

[2]

Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure and Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803

[3]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[4]

Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure and Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465

[5]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[6]

Cheng Wang, Xiaoming Wang, Steven M. Wise. Unconditionally stable schemes for equations of thin film epitaxy. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 405-423. doi: 10.3934/dcds.2010.28.405

[7]

Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867

[8]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[9]

Lei Yang, Xiao-Ping Wang. Dynamics of domain wall in thin film driven by spin current. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1251-1263. doi: 10.3934/dcdsb.2010.14.1251

[10]

Andrey Shishkov. Waiting time of propagation and the backward motion of interfaces in thin-film flow theory. Conference Publications, 2007, 2007 (Special) : 938-945. doi: 10.3934/proc.2007.2007.938

[11]

Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543

[12]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[13]

Minhajul, T. Raja Sekhar, G. P. Raja Sekhar. Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3367-3386. doi: 10.3934/cpaa.2019152

[14]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[15]

Anupam Sen, T. Raja Sekhar. Delta shock wave and wave interactions in a thin film of a perfectly soluble anti-surfactant solution. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2641-2653. doi: 10.3934/cpaa.2020115

[16]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

[17]

Tai Chiu Edwin Cheng, Bertrand Miao-Tsong Lin, Hsiao-Lan Huang. Talent hold cost minimization in film production. Journal of Industrial and Management Optimization, 2017, 13 (1) : 223-235. doi: 10.3934/jimo.2016013

[18]

Vincent Giovangigli. Persistence of Boltzmann entropy in fluid models. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 95-114. doi: 10.3934/dcds.2009.24.95

[19]

Debora Amadori, Stefania Ferrari, Luca Formaggia. Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2 (1) : 99-125. doi: 10.3934/nhm.2007.2.99

[20]

Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]