• Previous Article
    On certain nonlinear parabolic equations with singular diffusion and data in $L^1$
  • CPAA Home
  • This Issue
  • Next Article
    Exponential stability in $H^4$ for the Navier--Stokes equations of compressible and heat conductive fluid
September  2005, 4(3): 613-634. doi: 10.3934/cpaa.2005.4.613

New dissipated energies for the thin fluid film equation

1. 

Department of Mathematics, University of Illinois, Urbana, IL 61801, United States

Received  September 2004 Revised  January 2005 Published  June 2005

The thin fluid film evolution $h_t = -(h^n h_{x x x})_x$ is known to conserve the fluid volume $\int h dx$ and to dissipate the "energies" $\int h^{1.5-n} dx$ and $\int h_x^2 dx$. We extend this last result by showing the energy $\int h^p h_x^2 dx$ is dissipated for some values of $p < 0$, when $\frac{1}{2} < n < 3$. For example when $n=1$, the Hele-Shaw equation $h_t = -(h h_{x x x})_x$ dissipates $\int h^{-1/2} h_x^2 dx$.
Citation: Richard S. Laugesen. New dissipated energies for the thin fluid film equation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 613-634. doi: 10.3934/cpaa.2005.4.613
[1]

Marina Chugunova, Roman M. Taranets. New dissipated energy for the unstable thin film equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 613-624. doi: 10.3934/cpaa.2011.10.613

[2]

Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure & Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803

[3]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[4]

Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465

[5]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[6]

Cheng Wang, Xiaoming Wang, Steven M. Wise. Unconditionally stable schemes for equations of thin film epitaxy. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 405-423. doi: 10.3934/dcds.2010.28.405

[7]

Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867

[8]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[9]

Lei Yang, Xiao-Ping Wang. Dynamics of domain wall in thin film driven by spin current. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1251-1263. doi: 10.3934/dcdsb.2010.14.1251

[10]

Andrey Shishkov. Waiting time of propagation and the backward motion of interfaces in thin-film flow theory. Conference Publications, 2007, 2007 (Special) : 938-945. doi: 10.3934/proc.2007.2007.938

[11]

Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543

[12]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[13]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[14]

Minhajul, T. Raja Sekhar, G. P. Raja Sekhar. Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3367-3386. doi: 10.3934/cpaa.2019152

[15]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

[16]

Tai Chiu Edwin Cheng, Bertrand Miao-Tsong Lin, Hsiao-Lan Huang. Talent hold cost minimization in film production. Journal of Industrial & Management Optimization, 2017, 13 (1) : 223-235. doi: 10.3934/jimo.2016013

[17]

Vincent Giovangigli. Persistence of Boltzmann entropy in fluid models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 95-114. doi: 10.3934/dcds.2009.24.95

[18]

Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054

[19]

Byeongchan Lee, Jonghun Yoon, Yang Woo Shin, Ganguk Hwang. Tail asymptotics of fluid queues in a distributed server system fed by a heavy-tailed ON-OFF flow. Journal of Industrial & Management Optimization, 2016, 12 (2) : 637-652. doi: 10.3934/jimo.2016.12.637

[20]

Debora Amadori, Stefania Ferrari, Luca Formaggia. Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks & Heterogeneous Media, 2007, 2 (1) : 99-125. doi: 10.3934/nhm.2007.2.99

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]