December  2005, 4(4): 757-762. doi: 10.3934/cpaa.2005.4.757

Some special solutions of the multidimensional Euler equations in $R^N$

1. 

Department of Mathematics, Stanford University, Stanford, CA 94305, United States

Received  January 2005 Revised  May 2005 Published  September 2005

In this paper we give some special solutions, including some blow-up solutions, to the multi-dimensional Euler equations for compressible gas dynamics. We also show that finite energy implies nonexistence of $\delta$-function blow-up for $\gamma>1$.
Citation: Tianhong Li. Some special solutions of the multidimensional Euler equations in $R^N$. Communications on Pure & Applied Analysis, 2005, 4 (4) : 757-762. doi: 10.3934/cpaa.2005.4.757
[1]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[2]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[3]

Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139

[4]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[5]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[6]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[7]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[8]

Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure & Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365

[9]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[10]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[11]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[12]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[13]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[14]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[15]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[16]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[17]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[18]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[19]

John A. D. Appleby, Denis D. Patterson. Blow-up and superexponential growth in superlinear Volterra equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3993-4017. doi: 10.3934/dcds.2018174

[20]

Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]