December  2005, 4(4): 779-803. doi: 10.3934/cpaa.2005.4.779

Coupled problems on stationary non-isothermal flow of electrorheological fluids

1. 

Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik, Universität Augsburg, Universitätsstrasse, 14, 86159 Augsburg, Germany

2. 

Department of Mathematics, University of Houston, Houston, TX 77204-3008, United States

Received  October 2004 Revised  April 2005 Published  September 2005

We set up and investigate a coupled problem on stationary non-isothermal flow of electrorheological fluids. The problems consist in finding functions of velocity, pressure and temperature which satisfy the motion equations, the condition of incompressibility, the equation of the balance of thermal energy and boundary conditions. We consider original and regularized coupled problems. In the regularized problem the dissipation of energy is defined by the regularized velocity field which leads to a nonlocal model. We introduce the notions of generalized solutions for the original and regularized problems. The existence of the generalized solution of the regularized problem is proved by using the methods of monotonicity, compactness, and topological degree. We prove that there exists a solution of the original problem where the domain of flow is two-or three-dimensional (in the case of a three-dimensional domain an extra condition is being assumed). It is shown that the solution of the original problem is a limiting point of the set of solutions of the regularized problems in which the parameter of regularization tends to zero.
Citation: W. G. Litvinov, R. H.W. Hoppe. Coupled problems on stationary non-isothermal flow of electrorheological fluids. Communications on Pure and Applied Analysis, 2005, 4 (4) : 779-803. doi: 10.3934/cpaa.2005.4.779
[1]

Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 213-227. doi: 10.3934/dcdss.2021015

[2]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. An existence theorem for the magneto-viscoelastic problem. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 435-447. doi: 10.3934/dcdss.2012.5.435

[3]

R. H.W. Hoppe, William G. Litvinov. Problems on electrorheological fluid flows. Communications on Pure and Applied Analysis, 2004, 3 (4) : 809-848. doi: 10.3934/cpaa.2004.3.809

[4]

M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208

[5]

W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure and Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247

[6]

Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335

[7]

C. Davini, F. Jourdan. Approximations of degree zero in the Poisson problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 267-281. doi: 10.3934/cpaa.2005.4.267

[8]

Feiyao Ma, Lihe Wang. Schauder type estimates of linearized Mullins-Sekerka problem. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1037-1050. doi: 10.3934/cpaa.2012.11.1037

[9]

Kim Knudsen, Matti Lassas, Jennifer L. Mueller, Samuli Siltanen. Regularized D-bar method for the inverse conductivity problem. Inverse Problems and Imaging, 2009, 3 (4) : 599-624. doi: 10.3934/ipi.2009.3.599

[10]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[11]

Kim Knudsen, Aksel Kaastrup Rasmussen. Direct regularized reconstruction for the three-dimensional Calderón problem. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022002

[12]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[13]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2271-2297. doi: 10.3934/dcds.2013.33.2271

[14]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133

[15]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[16]

Francesca Colasuonno, Fausto Ferrari. The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem. Communications on Pure and Applied Analysis, 2020, 19 (2) : 983-1000. doi: 10.3934/cpaa.2020045

[17]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[18]

Johannes Elschner, George C. Hsiao, Andreas Rathsfeld. An inverse problem for fluid-solid interaction. Inverse Problems and Imaging, 2008, 2 (1) : 83-120. doi: 10.3934/ipi.2008.2.83

[19]

Peter Monk, Virginia Selgas. An inverse fluid--solid interaction problem. Inverse Problems and Imaging, 2009, 3 (2) : 173-198. doi: 10.3934/ipi.2009.3.173

[20]

Felipe Linares, M. Panthee. On the Cauchy problem for a coupled system of KdV equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 417-431. doi: 10.3934/cpaa.2004.3.417

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]