-
Previous Article
Existence of steady flows of slightly compressible viscoelastic fluids of White-Metzner type around an obstacle
- CPAA Home
- This Issue
-
Next Article
Regularity of solutions for a system of integral equations
On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian
1. | Université de La Rochelle, Laboratoire de Mathématiques et Applications, 17042 La Rochelle cedex, France |
2. | Bashkir State University, Ufa, Frunze 32, Russian Federation |
[1] |
Kewei Zhang. On non-negative quasiconvex functions with quasimonotone gradients and prescribed zero sets. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 353-366. doi: 10.3934/dcds.2008.21.353 |
[2] |
Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841 |
[3] |
Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481 |
[4] |
Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35 |
[5] |
Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831 |
[6] |
Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539 |
[7] |
Humberto Ramos Quoirin, Kenichiro Umezu. A loop type component in the non-negative solutions set of an indefinite elliptic problem. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1255-1269. doi: 10.3934/cpaa.2018060 |
[8] |
Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813 |
[9] |
Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031 |
[10] |
Guohua Zhang. Variational principles of pressure. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409 |
[11] |
Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 |
[12] |
Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587 |
[13] |
Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019 |
[14] |
Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure and Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941 |
[15] |
Gustavo S. Costa, Giovany M. Figueiredo. Existence and concentration of nodal solutions for a subcritical p&q equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5077-5095. doi: 10.3934/cpaa.2020227 |
[16] |
David Kinderlehrer, Michał Kowalczyk. The Janossy effect and hybrid variational principles. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 153-176. doi: 10.3934/dcdsb.2009.11.153 |
[17] |
Xing-Fu Zhong. Variational principles of invariance pressures on partitions. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 491-508. doi: 10.3934/dcds.2020019 |
[18] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[19] |
Maurizio Garrione, Marta Strani. Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 91-103. doi: 10.3934/dcdss.2019006 |
[20] |
CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure and Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]