-
Previous Article
Boundary layer and variational eigencurve in two-parameter single pendulum type equations
- CPAA Home
- This Issue
-
Next Article
On the strong invariance property for non-Lipschitz dynamics
A Nekhoroshev theorem for some infinite--dimensional systems
1. | Dipartimento di Matematica, Università di Tor Vergata, via della ricerca scientifica, 00133, Roma, Italy |
[1] |
Jinxin Xue. Continuous averaging proof of the Nekhoroshev theorem. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3827-3855. doi: 10.3934/dcds.2015.35.3827 |
[2] |
Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207 |
[3] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 821-836. doi: 10.3934/dcdsb.2021066 |
[4] |
J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731 |
[5] |
Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control and Related Fields, 2022, 12 (1) : 245-273. doi: 10.3934/mcrf.2021021 |
[6] |
Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215 |
[7] |
Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1 |
[8] |
Martin Schechter. Monotonicity methods for infinite dimensional sandwich systems. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 455-468. doi: 10.3934/dcds.2010.28.455 |
[9] |
Marius Tucsnak. Preface to the special issue on control of infinite dimensional systems. Mathematical Control and Related Fields, 2019, 9 (4) : i-ii. doi: 10.3934/mcrf.2019042 |
[10] |
Mohammed Elarbi Achhab. On observers and compensators for infinite dimensional semilinear systems. Evolution Equations and Control Theory, 2015, 4 (2) : 131-142. doi: 10.3934/eect.2015.4.131 |
[11] |
Paolo Perfetti. An infinite-dimensional extension of a Poincaré's result concerning the continuation of periodic orbits. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 401-418. doi: 10.3934/dcds.1997.3.401 |
[12] |
Marta Lewicka, Mohammadreza Raoofi. A stability result for the Stokes-Boussinesq equations in infinite 3d channels. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2615-2625. doi: 10.3934/cpaa.2013.12.2615 |
[13] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Saeed M. Ali. New stability result for a Bresse system with one infinite memory in the shear angle equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 995-1014. doi: 10.3934/dcdss.2021086 |
[14] |
J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467 |
[15] |
Xavier Cabré, Amadeu Delshams, Marian Gidea, Chongchun Zeng. Preface of Llavefest: A broad perspective on finite and infinite dimensional dynamical systems. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : i-iii. doi: 10.3934/dcds.201812i |
[16] |
María J. Garrido-Atienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : i-iv. doi: 10.3934/dcdsb.201705i |
[17] |
H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77 |
[18] |
Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149 |
[19] |
Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura. Infinite dimensional relaxation oscillation in aggregation-growth systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1859-1887. doi: 10.3934/dcdsb.2012.17.1859 |
[20] |
Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control and Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]