-
Previous Article
Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients
- CPAA Home
- This Issue
-
Next Article
A Nekhoroshev theorem for some infinite--dimensional systems
Boundary layer and variational eigencurve in two-parameter single pendulum type equations
1. | The Division of Mathematical and Information Sciences, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan |
[1] |
Hinke M. Osinga, James Rankin. Two-parameter locus of boundary crisis: Mind the gaps!. Conference Publications, 2011, 2011 (Special) : 1148-1157. doi: 10.3934/proc.2011.2011.1148 |
[2] |
Farid Tari. Two-parameter families of implicit differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139 |
[3] |
Lixia Duan, Zhuoqin Yang, Shenquan Liu, Dunwei Gong. Bursting and two-parameter bifurcation in the Chay neuronal model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 445-456. doi: 10.3934/dcdsb.2011.16.445 |
[4] |
Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461 |
[5] |
Suqi Ma, Zhaosheng Feng, Qishao Lu. A two-parameter geometrical criteria for delay differential equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 397-413. doi: 10.3934/dcdsb.2008.9.397 |
[6] |
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Persistent two-dimensional strange attractors for a two-parameter family of Expanding Baker Maps. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 657-670. doi: 10.3934/dcdsb.2018201 |
[7] |
Rashad M. Asharabi, Jürgen Prestin. Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4143-4158. doi: 10.3934/cpaa.2020185 |
[8] |
Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005 |
[9] |
Kateryna Marynets. Stability analysis of the boundary value problem modelling a two-layer ocean. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2433-2445. doi: 10.3934/cpaa.2022083 |
[10] |
Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985 |
[11] |
Yaguang Wang, Shiyong Zhu. Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3233-3244. doi: 10.3934/cpaa.2020141 |
[12] |
Long Fan, Cheng-Jie Liu, Lizhi Ruan. Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow. Electronic Research Archive, 2021, 29 (6) : 4009-4050. doi: 10.3934/era.2021070 |
[13] |
Wei-Xi Li, Rui Xu. Well-posedness in Sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity. Electronic Research Archive, 2021, 29 (6) : 4243-4255. doi: 10.3934/era.2021082 |
[14] |
Gung-Min Gie, Chang-Yeol Jung, Roger Temam. Recent progresses in boundary layer theory. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2521-2583. doi: 10.3934/dcds.2016.36.2521 |
[15] |
X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure and Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419 |
[16] |
Rafael Labarca, Solange Aranzubia. A formula for the boundary of chaos in the lexicographical scenario and applications to the bifurcation diagram of the standard two parameter family of quadratic increasing-increasing Lorenz maps. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1745-1776. doi: 10.3934/dcds.2018072 |
[17] |
D. Sanchez. Boundary layer on a high-conductivity domain. Communications on Pure and Applied Analysis, 2002, 1 (4) : 547-564. doi: 10.3934/cpaa.2002.1.547 |
[18] |
Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331 |
[19] |
Liping Wang, Chunyi Zhao. Solutions with clustered bubbles and a boundary layer of an elliptic problem. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2333-2357. doi: 10.3934/dcds.2014.34.2333 |
[20] |
Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]