$-\Delta_p u = k_1(|x| )f(u,v),$ for $|x| > 1$ and $x \in \mathbb R^N, $
$-\Delta_p v = k_2(|x|)g(u,v),$ for $|x| > 1 $ and $x \in \mathbb R^N, $
$u(x) = v(x) =0,$ for $|x| =1, $
$u(x), v(x) \rightarrow 0 $ as $|x| \rightarrow +\infty,$
where $1 < p < N $ and $\Delta_p u=$ div $(|\nabla u|^{p-2}\nabla u )$ is the p-Laplacian operator. We consider nonlinearities that are either superlinear or sublinear.
Citation: |