-
Previous Article
Global attractor for a composite system of nonlinear wave and plate equations
- CPAA Home
- This Issue
-
Next Article
Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory
Periodic solutions of nonlinear periodic differential systems with a small parameter
1. | Department of Applied Mathematics, Babeş-Bolyai University, 1 Kogălniceanu str., Cluj-Napoca, 400084, Romania |
2. | Laboratoire J.-L. Lions, Université P.-M. Curie, Paris 6, UMR 7598, CNRS, Paris, France |
3. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia |
[1] |
Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201 |
[2] |
Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739 |
[3] |
S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604 |
[4] |
Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations and Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016 |
[5] |
Mickael Chekroun, Michael Ghil, Jean Roux, Ferenc Varadi. Averaging of time - periodic systems without a small parameter. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 753-782. doi: 10.3934/dcds.2006.14.753 |
[6] |
Misael Avendaño-Camacho, Isaac Hasse-Armengol, Eduardo Velasco-Barreras, Yury Vorobiev. The method of averaging for Poisson connections on foliations and its applications. Journal of Geometric Mechanics, 2020, 12 (3) : 343-361. doi: 10.3934/jgm.2020015 |
[7] |
Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092 |
[8] |
Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070 |
[9] |
Ruichao Guo, Yong Li, Jiamin Xing, Xue Yang. Existence of periodic solutions of dynamic equations on time scales by averaging. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 959-971. doi: 10.3934/dcdss.2017050 |
[10] |
Wei Mao, Liangjian Hu, Surong You, Xuerong Mao. The averaging method for multivalued SDEs with jumps and non-Lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4937-4954. doi: 10.3934/dcdsb.2019039 |
[11] |
Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049 |
[12] |
Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049 |
[13] |
Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071 |
[14] |
Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333 |
[15] |
Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375 |
[16] |
M. Sumon Hossain, M. Monir Uddin. Iterative methods for solving large sparse Lyapunov equations and application to model reduction of index 1 differential-algebraic-equations. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 173-186. doi: 10.3934/naco.2019013 |
[17] |
Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259 |
[18] |
David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 |
[19] |
Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025 |
[20] |
Xiu Ye, Shangyou Zhang. A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4131-4145. doi: 10.3934/dcdsb.2020277 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]