-
Previous Article
Periodic solutions of a periodic scalar piecewise ode
- CPAA Home
- This Issue
-
Next Article
A result on Hardy-Sobolev critical elliptic equations with boundary singularities
Remarks on dispersive estimates and curvature
1. | Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy |
[1] |
Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134 |
[2] |
Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723 |
[3] |
Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143 |
[4] |
Gong Chen. Strichartz estimates for charge transfer models. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1201-1226. doi: 10.3934/dcds.2017050 |
[5] |
Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100 |
[6] |
Yonggeun Cho, Tohru Ozawa, Suxia Xia. Remarks on some dispersive estimates. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1121-1128. doi: 10.3934/cpaa.2011.10.1121 |
[7] |
Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55 |
[8] |
Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905 |
[9] |
Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771 |
[10] |
Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210 |
[11] |
Seongyeon Kim, Yehyun Kwon, Ihyeok Seo. Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1897-1911. doi: 10.3934/dcds.2020344 |
[12] |
Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233 |
[13] |
Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109 |
[14] |
Luca Di Persio, Giacomo Ziglio. Gaussian estimates on networks with applications to optimal control. Networks and Heterogeneous Media, 2011, 6 (2) : 279-296. doi: 10.3934/nhm.2011.6.279 |
[15] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
[16] |
M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473 |
[17] |
Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995 |
[18] |
Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263 |
[19] |
René Henrion. Gradient estimates for Gaussian distribution functions: application to probabilistically constrained optimization problems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 655-668. doi: 10.3934/naco.2012.2.655 |
[20] |
Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]