March  2007, 6(1): 23-42. doi: 10.3934/cpaa.2007.6.23

Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system

1. 

Departamento de Matemáticas, Universidad de Cádiz, CASEM, Campus del Río San Pedro, 11510 Puerto Real, Cádiz, Spain

2. 

Departmento de Matemáticas, Facultad de Ciencias Económicas y Empresariales, Universidad de Cádiz, 11002 Cádiz, Spain

Received  July 2005 Revised  September 2006 Published  December 2007

We show the existence of a capacity solution to a coupled nonlinear parabolic--elliptic system, the elliptic part in the parabolic equation being of the form -div $a(x,t,u,\nabla u)$, where the operator $a$ is of Leray--Lions type. Also, we consider the case where the elliptic equation is non-uniformly elliptic. The system may be regarded as a generalized version of the well-known thermistor problem.
Citation: Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure and Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23
[1]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[2]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272

[4]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[5]

Wanwan Wang, Hongxia Zhang, Huyuan Chen. Remarks on weak solutions of fractional elliptic equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 335-340. doi: 10.3934/cpaa.2016.15.335

[6]

H. Merdan, G. Caginalp. Decay of solutions to nonlinear parabolic equations: renormalization and rigorous results. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 565-588. doi: 10.3934/dcdsb.2003.3.565

[7]

Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657

[8]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[9]

Mitsuharu Ôtani, Yoshie Sugiyama. Lipschitz continuous solutions of some doubly nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 647-670. doi: 10.3934/dcds.2002.8.647

[10]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[11]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[12]

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081

[13]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[14]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[15]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[16]

Marie-Françoise Bidaut-Véron, Marta Garcia-Huidobro, Laurent Véron. Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 933-982. doi: 10.3934/dcds.2020067

[17]

Y. Efendiev, Alexander Pankov. Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 481-492. doi: 10.3934/dcdsb.2006.6.481

[18]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Multiple solutions for nonlinear elliptic equations with an asymmetric reaction term. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2469-2494. doi: 10.3934/dcds.2013.33.2469

[19]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[20]

Song Peng, Aliang Xia. Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1201-1217. doi: 10.3934/cpaa.2018058

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (242)
  • HTML views (0)
  • Cited by (4)

[Back to Top]