March  2007, 6(1): 43-67. doi: 10.3934/cpaa.2007.6.43

Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian

1. 

Departament de Matemàtica Aplicada 1, Universitat Politècnica de Catalunya, Av. Diagonal 647. 08028 Barcelona

2. 

Centro de Matemática, Universidade de Coimbra, Apartado 3008, 3001–454 Coimbra, Portugal

Received  April 2006 Revised  July 2006 Published  December 2006

We consider nonnegative solutions of $-\Delta_p u=f(x,u)$, where $p>1$ and $\Delta_p$ is the $p$-Laplace operator, in a smooth bounded domain of $\mathbb R^N$ with zero Dirichlet boundary conditions. We introduce the notion of semi-stability for a solution (perhaps unbounded). We prove that certain minimizers, or one-sided minimizers, of the energy are semi-stable, and study the properties of this class of solutions.
Under some assumptions on $f$ that make its growth comparable to $u^m$, we prove that every semi-stable solution is bounded if $m < m_{c s}$. Here, $m_{c s}=m_{c s}(N,p)$ is an explicit exponent which is optimal for the boundedness of semi-stable solutions. In particular, it is bigger than the critical Sobolev exponent $p^\star-1$.
We also study a type of semi-stable solutions called extremal solutions, for which we establish optimal $L^\infty$ estimates. Moreover, we characterize singular extremal solutions by their semi-stability property when the domain is a ball and $1 < p < 2$.
Citation: Xavier Cabré, Manel Sanchón. Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian. Communications on Pure & Applied Analysis, 2007, 6 (1) : 43-67. doi: 10.3934/cpaa.2007.6.43
[1]

Avner Friedman, Kang-Ling Liao. The role of the cytokines IL-27 and IL-35 in cancer. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1203-1217. doi: 10.3934/mbe.2015.12.1203

[2]

Francisco Pedroche, Regino Criado, Esther García, Miguel Romance, Victoria E. Sánchez. Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index). Networks & Heterogeneous Media, 2015, 10 (1) : 101-125. doi: 10.3934/nhm.2015.10.101

[3]

Tassilo Küpper. Bifurcation revisited along footprints of Jürgen Scheurle. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-11. doi: 10.3934/dcdss.2020061

[4]

Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48

[5]

Piotr Jaworski, Marcin Pitera. The 20-60-20 rule. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1149-1166. doi: 10.3934/dcdsb.2016.21.1149

[6]

Alberto Bressan, Yilun Jiang. The vanishing viscosity limit for a system of H-J equations related to a debt management problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 793-824. doi: 10.3934/dcdss.2018050

[7]

Pierluigi Colli, Gianni Gilardi, Dietmar Hömberg, Pavel Krejčí, Elisabetta Rocca. Preface: Special issue dedicated to Jürgen Sprekels on the occasion of his 65th birthday. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : i-ii. doi: 10.3934/dcds.2015.35.6i

[8]

Vladimir Ejov, Anatoli Torokhti. How to transform matrices $U_1, \ldots, U_p$ to matrices $V_1, \ldots, V_p$ so that $V_i V_j^T= {\mathbb O} $ if $ i \neq j $?. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 293-299. doi: 10.3934/naco.2012.2.293

[9]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[10]

Guoliang Xue, Weiyi Zhang, Tie Wang, Krishnaiyan Thulasiraman. On the partial path protection scheme for WDM optical networks and polynomial time computability of primary and secondary paths. Journal of Industrial & Management Optimization, 2007, 3 (4) : 625-643. doi: 10.3934/jimo.2007.3.625

[11]

Robert Stephen Cantrell, Suzanne Lenhart, Yuan Lou, Shigui Ruan. Preface on the special issue of Discrete and Continuous Dynamical Systems- Series B in honor of Chris Cosner on the occasion of his 60th birthday. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : i-ii. doi: 10.3934/dcdsb.2014.19.1i

[12]

Guohong Zhang, Xiaoli Wang. Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3755-3786. doi: 10.3934/dcdsb.2018076

[13]

Carlo Cercignani. The Boltzmann equation in the 20th century. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 83-94. doi: 10.3934/dcds.2009.24.83

[14]

Claude Carlet, Fengrong Zhang, Yupu Hu. Secondary constructions of bent functions and their enforcement. Advances in Mathematics of Communications, 2012, 6 (3) : 305-314. doi: 10.3934/amc.2012.6.305

[15]

Mohammad Asadzadeh, Anders Brahme, Jiping Xin. Galerkin methods for primary ion transport in inhomogeneous media. Kinetic & Related Models, 2010, 3 (3) : 373-394. doi: 10.3934/krm.2010.3.373

[16]

Vladimir V. Marchenko, Klavdii V. Maslov, Dmitry Shepelsky, V. V. Zhikov. E.Ya.Khruslov. On the occasion of his 70th birthday. Networks & Heterogeneous Media, 2008, 3 (3) : 647-650. doi: 10.3934/nhm.2008.3.647

[17]

Tsonka Baicheva. All binary linear codes of lengths up to 18 or redundancy up to 10 are normal. Advances in Mathematics of Communications, 2011, 5 (4) : 681-686. doi: 10.3934/amc.2011.5.681

[18]

Josef Hofbauer, Rida Laraki, Jérôme Renault. Preface: Special Issue in Honor of the 60th Birthday of Sylvain Sorin. Journal of Dynamics & Games, 2014, 1 (3) : i-iv. doi: 10.3934/jdg.2014.1.3i

[19]

Luis Alberto Fernández, Mariano Mateos, Cecilia Pola, Fredi Tröltzsch, Enrique Zuazua. Preface: A tribute to professor Eduardo Casas on his 60th birthday. Mathematical Control & Related Fields, 2018, 8 (1) : i-ii. doi: 10.3934/mcrf.201801i

[20]

Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]