September  2008, 7(5): 1193-1201. doi: 10.3934/cpaa.2008.7.1193

Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue

1. 

Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 6083, Université François Rabelais de Tours, Parc de Grandmont, F-37200 Tours, France, France

Received  November 2006 Revised  February 2008 Published  June 2008

We prove that among all doubly connected domains of $\mathbb R^n$ bounded by two spheres of given radii, the second eigenvalue of the Dirichlet Laplacian achieves its maximum when the spheres are concentric (spherical shell). The corresponding result for the first eigenvalue has been established by Hersch [12] in dimension 2, and by Harrell, Kröger and Kurata [10] and Kesavan [13] in any dimension.
We also prove that the same result remains valid when the ambient space $\mathbb R^n$ is replaced by the standard sphere $\mathbb S^n$ or the hyperbolic space $\mathbb H^n$.
Citation: Rola Kiwan, Ahmad El Soufi. Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1193-1201. doi: 10.3934/cpaa.2008.7.1193
[1]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[2]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[3]

Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701

[4]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[5]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[6]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[7]

Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799

[8]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[9]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[10]

Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239

[11]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[12]

Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071

[13]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[14]

Xavier Cabré, Manel Sanchón. Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian. Communications on Pure & Applied Analysis, 2007, 6 (1) : 43-67. doi: 10.3934/cpaa.2007.6.43

[15]

Françoise Demengel, Thomas Dumas. Extremal functions for an embedding from some anisotropic space, involving the "one Laplacian". Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1135-1155. doi: 10.3934/dcds.2019048

[16]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[17]

Feng Du, Adriano Cavalcante Bezerra. Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting laplacian. Communications on Pure & Applied Analysis, 2017, 6 (2) : 475-491. doi: 10.3934/cpaa.2017024

[18]

Guowei Dai, Ruyun Ma, Haiyan Wang. Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2839-2872. doi: 10.3934/cpaa.2013.12.2839

[19]

Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219

[20]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]