-
Previous Article
Global well-posedness for a transport equation with non-local velocity and critical diffusion
- CPAA Home
- This Issue
-
Next Article
Global existence of solutions for subcritical quasi-geostrophic equations
Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue
1. | Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 6083, Université François Rabelais de Tours, Parc de Grandmont, F-37200 Tours, France, France |
We also prove that the same result remains valid when the ambient space $\mathbb R^n$ is replaced by the standard sphere $\mathbb S^n$ or the hyperbolic space $\mathbb H^n$.
[1] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure and Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[2] |
Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209 |
[3] |
Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 301-317. doi: 10.3934/dcds.2021117 |
[4] |
Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027 |
[5] |
Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure and Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701 |
[6] |
Paolo Piersanti. On the improved interior regularity of a boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 1011-1037. doi: 10.3934/dcds.2021145 |
[7] |
Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093 |
[8] |
Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813 |
[9] |
Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033 |
[10] |
Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799 |
[11] |
Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 |
[12] |
Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075 |
[13] |
Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046 |
[14] |
Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239 |
[15] |
Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071 |
[16] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
[17] |
Xavier Cabré, Manel Sanchón. Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian. Communications on Pure and Applied Analysis, 2007, 6 (1) : 43-67. doi: 10.3934/cpaa.2007.6.43 |
[18] |
Françoise Demengel, Thomas Dumas. Extremal functions for an embedding from some anisotropic space, involving the "one Laplacian". Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1135-1155. doi: 10.3934/dcds.2019048 |
[19] |
Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201 |
[20] |
Feng Du, Adriano Cavalcante Bezerra. Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting laplacian. Communications on Pure and Applied Analysis, 2017, 6 (2) : 475-491. doi: 10.3934/cpaa.2017024 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]