September  2008, 7(5): 1203-1210. doi: 10.3934/cpaa.2008.7.1203

Global well-posedness for a transport equation with non-local velocity and critical diffusion

1. 

Department of Mathematics, Shanghai Finance University, Shanghai 201209, China

Received  July 2007 Revised  January 2008 Published  June 2008

This paper is concerned with a one dimensional transport equation with a non-local velocity and critical diffusion. In [Ann. of Math. 162 (2005), 1377--1389], A. Córdoba, D. Córdoba and Marco A. Fontelos showed the finite time singularities for a family of initial data without diffusion, global existence with subcritical diffusion and the global existence for small initial data with critical diffusion. We prove the global existence with critical diffusion, removing the smallness constraint on the initial data.
Citation: Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203
[1]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[2]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[3]

Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks & Heterogeneous Media, 2019, 14 (3) : 471-487. doi: 10.3934/nhm.2019019

[4]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[5]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[6]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[7]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[8]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[9]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[10]

Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021

[11]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[12]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[13]

Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445

[14]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[15]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[16]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[17]

Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483

[18]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[19]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[20]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]