
Previous Article
Linearization of smooth planar vector fields around singular points via commuting flows
 CPAA Home
 This Issue

Next Article
Stabilisation of differential inclusions and PDEs without uniqueness by noise
Asymptotic behavior of a hyperbolic system arising in ferroelectricity
1.  Dipartimento di Matematica “F. Casorati”, Università di Pavia, Via Ferrata, 1, I27100 Pavia, Italy 
[1] 
Brahim Alouini. Global attractor for a one dimensional weakly damped halfwave equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020410 
[2] 
Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 21812205. doi: 10.3934/dcds.2017094 
[3] 
Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305312. doi: 10.3934/proc.2003.2003.305 
[4] 
Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic nonautonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems  A, 2018, 38 (9) : 47674817. doi: 10.3934/dcds.2018210 
[5] 
Zhiming Liu, Zhijian Yang. Global attractor of multivalued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 223240. doi: 10.3934/dcdsb.2019179 
[6] 
Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems  B, 2014, 19 (1) : 217230. doi: 10.3934/dcdsb.2014.19.217 
[7] 
Stéphane Gerbi, Belkacem SaidHouari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems  S, 2012, 5 (3) : 559566. doi: 10.3934/dcdss.2012.5.559 
[8] 
Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems  A, 2002, 8 (4) : 939951. doi: 10.3934/dcds.2002.8.939 
[9] 
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with supcubic nonlinearity. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020270 
[10] 
Milena Stanislavova. On the global attractor for the damped BenjaminBonaMahony equation. Conference Publications, 2005, 2005 (Special) : 824832. doi: 10.3934/proc.2005.2005.824 
[11] 
D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal KuramotoSivashinsky equation. Discrete & Continuous Dynamical Systems  A, 2004, 10 (1&2) : 557580. doi: 10.3934/dcds.2004.10.557 
[12] 
Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long waveshort wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems  B, 2020, 25 (8) : 31533170. doi: 10.3934/dcdsb.2020055 
[13] 
Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic nonautonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems  A, 2017, 37 (1) : 545573. doi: 10.3934/dcds.2017022 
[14] 
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic nonautonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems  A, 2016, 36 (5) : 28872914. doi: 10.3934/dcds.2016.36.2887 
[15] 
Hiroshi Matano, KenIchi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems  A, 1997, 3 (1) : 124. doi: 10.3934/dcds.1997.3.1 
[16] 
Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de VriesBenjaminOno equation in $L^2$. Discrete & Continuous Dynamical Systems  A, 2006, 16 (1) : 121136. doi: 10.3934/dcds.2006.16.121 
[17] 
Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 45454573. doi: 10.3934/cpaa.2020206 
[18] 
Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure & Applied Analysis, 2004, 3 (2) : 301318. doi: 10.3934/cpaa.2004.3.301 
[19] 
Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717726. doi: 10.3934/proc.2003.2003.717 
[20] 
Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020393 
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]