\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms

Abstract Related Papers Cited by
  • In the present paper we prove uniqueness results for weak solutions to a class of problems whose prototype is

    $-d i v((1+|\nabla u|^2)^{(p-2)/2} \nabla u)-d i v(c(x) (1+|u|^2)^{(\tau+1)/2}) $

    $+b(x) (1+|\nabla u|^2)^{(\sigma+1)/2}=f \ i n \ \mathcal D'(\Omega)\qquad\qquad\qquad\qquad\qquad\qquad\qquad$

    $u\in W^{1,p}_0(\Omega)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$

    where $\Omega$ is a bounded open subset of $\mathbb R^N$ $(N\ge 2)$, $p$ is a real number $\frac{2N}{N+1}< p <+\infty$, the coefficients $c(x)$ and $b(x)$ belong to suitable Lebesgue spaces, $f$ is an element of the dual space $W^{-1,p'}(\Omega)$ and $\tau$ and $\sigma$ are positive constants which belong to suitable intervals specified in Theorem 2.1, Theorem 2.2 and Theorem 2.3.

    Mathematics Subject Classification: Primary: 35J25; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return