March  2008, 7(2): 407-416. doi: 10.3934/cpaa.2008.7.407

Regularity theory in Orlicz spaces for the poisson and heat equations

1. 

Department of Mathematics, Xian Jiaotong University, Xian 710049, China

2. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242

3. 

LMAM, School of Mathematical Sciences, Peking University, Bejing 100871, China, China

Received  August 2006 Revised  July 2007 Published  December 2007

In this paper we study the regularity theory in Orlicz spaces for the Poisson and heat equations.
Citation: Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure and Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407
[1]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[2]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[3]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[4]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[5]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[6]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[7]

Hangzhou Hu, Yuan Li, Dun Zhao. Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1899-1916. doi: 10.3934/dcdss.2021064

[8]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[9]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[10]

Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55

[11]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems and Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[12]

Chulan Zeng. Time analyticity of the biharmonic heat equation, the heat equation with potentials and some nonlinear heat equations. Communications on Pure and Applied Analysis, 2022, 21 (3) : 749-783. doi: 10.3934/cpaa.2021197

[13]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473

[14]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[15]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[16]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[17]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105

[18]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[19]

Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control and Related Fields, 2020, 10 (1) : 1-26. doi: 10.3934/mcrf.2019027

[20]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations and Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (138)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]