January  2008, 7(1): 49-61. doi: 10.3934/cpaa.2008.7.49

On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes

1. 

Research Institute of Mathematics, Voronezh State University, Ul. Universitetskaja pl. 1, 394006, Voronezh, Russian Federation

2. 

Dipartimento di Ingegneria dell' Informazione, Università di Siena, Via Roma 56, 53100, Siena, Italy

Received  January 2007 Revised  June 2007 Published  October 2007

We consider an autonomous system in $\mathbb R^n$ having a limit cycle $ x_0$ of period $T>0$ which is nondegenerate in a suitable sense, (see Definition 2.1). We then consider the perturbed system obtained by adding to the autonomous system a $T$-periodic, not necessarily differentiable, term whose amplitude tends to $0$ as a small parameter $\varepsilon>0$ tends to $0.$ Assuming the existence of a $T$-periodic solution $x_\varepsilon$ of the perturbed system and its convergence to $ x_0$ as $\varepsilon\to 0$, the paper establishes the existence of $\Delta_\varepsilon\to 0$ as $\varepsilon\to 0$ such that $||x_\varepsilon(t+\Delta_\varepsilon)-x_0(t)||\le\varepsilon M$ for some $M>0$ and any $\varepsilon>0$ sufficiently small. This paper completes the work initiated by the authors in [4] and [11]. Indeed, in [4] the existence of a family of $T$-periodic solutions $x_\varepsilon$ of the perturbed system considered here was proved. While in [11] for perturbed systems in $\mathbb R^2$ the rate of convergence was investigated by means of the method considered in this paper.
Citation: Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure & Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49
[1]

Salomón Rebollo-Perdomo, Claudio Vidal. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4189-4202. doi: 10.3934/dcds.2018182

[2]

Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3085-3108. doi: 10.3934/dcds.2013.33.3085

[3]

Jianhe Shen, Shuhui Chen, Kechang Lin. Study on the stability and bifurcations of limit cycles in higher-dimensional nonlinear autonomous systems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 231-254. doi: 10.3934/dcdsb.2011.15.231

[4]

Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835

[5]

José-Luis Bravo, Manuel Fernández. Limit cycles of non-autonomous scalar ODEs with two summands. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1091-1102. doi: 10.3934/cpaa.2013.12.1091

[6]

Maoan Han. On some properties and limit cycles of Lienard systems. Conference Publications, 2001, 2001 (Special) : 426-434. doi: 10.3934/proc.2001.2001.426

[7]

Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071

[8]

Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2475-2485. doi: 10.3934/dcdsb.2018070

[9]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[10]

Alexander M. Krasnoselskii. Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 999-1016. doi: 10.3934/dcdss.2013.6.999

[11]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic & Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[12]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[13]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[14]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[15]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[16]

Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284

[17]

Fabio Scalco Dias, Luis Fernando Mello. The center--focus problem and small amplitude limit cycles in rigid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1627-1637. doi: 10.3934/dcds.2012.32.1627

[18]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[19]

Luca Dieci, Cinzia Elia, Dingheng Pi. Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3091-3112. doi: 10.3934/dcdsb.2017165

[20]

Freddy Dumortier. Sharp upperbounds for the number of large amplitude limit cycles in polynomial Lienard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1465-1479. doi: 10.3934/dcds.2012.32.1465

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]