-
Previous Article
Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators
- CPAA Home
- This Issue
-
Next Article
Internal nonnegative stabilization for some parabolic equations
On the decay in time of solutions of some generalized regularized long waves equations
1. | Laboratoire Paul Painlevé, Université des Sciences et Technologies Lille 1, 59 655 Villeneuve d’Ascq, France |
[1] |
Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic and Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605 |
[2] |
Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69 |
[3] |
Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897 |
[4] |
Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225 |
[5] |
Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 |
[6] |
Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103 |
[7] |
Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009 |
[8] |
Zhuan Ye. Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6725-6743. doi: 10.3934/dcdsb.2019164 |
[9] |
Jorge Morales Paredes, Félix Humberto Soriano Méndez. On the Cauchy problems associated to a ZK-KP-type family equations with a transversal fractional dispersion. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2257-5593. doi: 10.3934/dcds.2021190 |
[10] |
Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure and Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835 |
[11] |
Aniura Milanés. Some results about a bidimensional version of the generalized BO. Communications on Pure and Applied Analysis, 2003, 2 (2) : 233-249. doi: 10.3934/cpaa.2003.2.233 |
[12] |
D. Lannes. Consistency of the KP approximation. Conference Publications, 2003, 2003 (Special) : 517-525. doi: 10.3934/proc.2003.2003.517 |
[13] |
Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407 |
[14] |
Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007 |
[15] |
Jacobo Baldonedo, José R. Fernández, Ramón Quintanilla. On the time decay for the MGT-type porosity problems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1941-1955. doi: 10.3934/dcdss.2022009 |
[16] |
Melek Jellouli. On the controllability of the BBM equation. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022002 |
[17] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[18] |
Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129 |
[19] |
Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic and Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121 |
[20] |
Jian-Wen Sun, Seonghak Kim. Exponential decay for quasilinear parabolic equations in any dimension. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021280 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]