July  2009, 8(4): 1133-1157. doi: 10.3934/cpaa.2009.8.1133

Study of the cyclicity of some degenerate graphics inside quadratic systems

1. 

Universiteit Hasselt, Campus Diepenbeek, Agoralaan–gebouw D, 3590 Diepenbeek

2. 

DMS and CRM, Université de Montréal, Canada

Received  January 2008 Revised  November 2008 Published  March 2009

In this paper we make essential steps in proving the finite cyclicity of degenerate graphics in quadratic systems, having a line of singular points in the finite plane. In particular we consider the graphics $(DF_{1 a})$, $(DF_{2 a})$ of the program of [8] to prove the finiteness part of Hilbert's 16th problem for quadratic vector fields. We make a complete treatment except for one very specific problem that we clearly identify.
Citation: Freddy Dumortier, Christiane Rousseau. Study of the cyclicity of some degenerate graphics inside quadratic systems. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1133-1157. doi: 10.3934/cpaa.2009.8.1133
[1]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[2]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[3]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[4]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[5]

D. Novikov and S. Yakovenko. Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems. Electronic Research Announcements, 1999, 5: 55-65.

[6]

Philippe Souplet, Juan-Luis Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 221-234. doi: 10.3934/dcds.2006.14.221

[7]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[8]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[9]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[10]

Pierpaolo Esposito, Maristella Petralla. Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1935-1957. doi: 10.3934/cpaa.2012.11.1935

[11]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[12]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[13]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[14]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[15]

Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069

[16]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[17]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[18]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[19]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[20]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]