
Previous Article
Properties and applications of a function involving exponential functions
 CPAA Home
 This Issue

Next Article
On a class of hypoelliptic operators with unbounded coefficients in $R^N$
Weak solutions of linear degenerate parabolic equations and an application in image processing
1.  Center for Industrial Mathematics Fachbereich 3, University of Bremen, Postfach 33 04 40, D28334 Bremen, Germany 
[1] 
Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781790. doi: 10.3934/proc.2013.2013.781 
[2] 
Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems  S, 2014, 7 (1) : 177189. doi: 10.3934/dcdss.2014.7.177 
[3] 
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213240. doi: 10.3934/cpaa.2006.5.213 
[4] 
Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete & Continuous Dynamical Systems  A, 2003, 9 (5) : 10811104. doi: 10.3934/dcds.2003.9.1081 
[5] 
GuiQiang Chen, Kenneth Hvistendahl Karlsen. Quasilinear anisotropic degenerate parabolic equations with timespace dependent diffusion coefficients. Communications on Pure & Applied Analysis, 2005, 4 (2) : 241266. doi: 10.3934/cpaa.2005.4.241 
[6] 
Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolichyperbolic equations with timespace dependent coefficients. Communications on Pure & Applied Analysis, 2013, 12 (3) : 11631182. doi: 10.3934/cpaa.2013.12.1163 
[7] 
Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 41454167. doi: 10.3934/dcdsb.2019054 
[8] 
Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems & Imaging, 2013, 7 (2) : 499521. doi: 10.3934/ipi.2013.7.499 
[9] 
M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 885905. doi: 10.3934/dcdsb.2007.7.885 
[10] 
Luisa Moschini, Guillermo Reyes, Alberto Tesei. Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 155179. doi: 10.3934/cpaa.2006.5.155 
[11] 
Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399408. doi: 10.3934/proc.2007.2007.399 
[12] 
YoungSam Kwon. Strong traces for degenerate parabolichyperbolic equations. Discrete & Continuous Dynamical Systems  A, 2009, 25 (4) : 12751286. doi: 10.3934/dcds.2009.25.1275 
[13] 
Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete & Continuous Dynamical Systems  B, 2010, 14 (3) : 11991210. doi: 10.3934/dcdsb.2010.14.1199 
[14] 
Wenjun Wang, Lei Yao. Spherically symmetric NavierStokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure & Applied Analysis, 2010, 9 (2) : 459481. doi: 10.3934/cpaa.2010.9.459 
[15] 
Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349358. doi: 10.3934/proc.2009.2009.349 
[16] 
Serena Dipierro, Aram Karakhanyan, Enrico Valdinoci. Classification of irregular free boundary points for nondivergence type equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems  A, 2018, 38 (12) : 60736090. doi: 10.3934/dcds.2018262 
[17] 
Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete & Continuous Dynamical Systems  A, 2008, 20 (3) : 543576. doi: 10.3934/dcds.2008.20.543 
[18] 
Genni Fragnelli, Dimitri Mugnai. Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case. Discrete & Continuous Dynamical Systems  S, 2020, 13 (5) : 14951511. doi: 10.3934/dcdss.2020084 
[19] 
Fangfang Dong, Yunmei Chen. A fractionalorder derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 2750. doi: 10.3934/ipi.2016.10.27 
[20] 
Wei Zhu, XueCheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems & Imaging, 2013, 7 (4) : 14091432. doi: 10.3934/ipi.2013.7.1409 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]