
Previous Article
On a class of hypoelliptic operators with unbounded coefficients in $R^N$
 CPAA Home
 This Issue

Next Article
Properties and applications of a function involving exponential functions
Weak solutions of linear degenerate parabolic equations and an application in image processing
1.  Center for Industrial Mathematics Fachbereich 3, University of Bremen, Postfach 33 04 40, D28334 Bremen, Germany 
[1] 
Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781790. doi: 10.3934/proc.2013.2013.781 
[2] 
Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems  S, 2014, 7 (1) : 177189. doi: 10.3934/dcdss.2014.7.177 
[3] 
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213240. doi: 10.3934/cpaa.2006.5.213 
[4] 
Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete & Continuous Dynamical Systems  A, 2003, 9 (5) : 10811104. doi: 10.3934/dcds.2003.9.1081 
[5] 
GuiQiang Chen, Kenneth Hvistendahl Karlsen. Quasilinear anisotropic degenerate parabolic equations with timespace dependent diffusion coefficients. Communications on Pure & Applied Analysis, 2005, 4 (2) : 241266. doi: 10.3934/cpaa.2005.4.241 
[6] 
Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolichyperbolic equations with timespace dependent coefficients. Communications on Pure & Applied Analysis, 2013, 12 (3) : 11631182. doi: 10.3934/cpaa.2013.12.1163 
[7] 
Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 41454167. doi: 10.3934/dcdsb.2019054 
[8] 
Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems & Imaging, 2013, 7 (2) : 499521. doi: 10.3934/ipi.2013.7.499 
[9] 
M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 885905. doi: 10.3934/dcdsb.2007.7.885 
[10] 
Luisa Moschini, Guillermo Reyes, Alberto Tesei. Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 155179. doi: 10.3934/cpaa.2006.5.155 
[11] 
Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399408. doi: 10.3934/proc.2007.2007.399 
[12] 
YoungSam Kwon. Strong traces for degenerate parabolichyperbolic equations. Discrete & Continuous Dynamical Systems  A, 2009, 25 (4) : 12751286. doi: 10.3934/dcds.2009.25.1275 
[13] 
Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete & Continuous Dynamical Systems  B, 2010, 14 (3) : 11991210. doi: 10.3934/dcdsb.2010.14.1199 
[14] 
Wenjun Wang, Lei Yao. Spherically symmetric NavierStokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure & Applied Analysis, 2010, 9 (2) : 459481. doi: 10.3934/cpaa.2010.9.459 
[15] 
Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349358. doi: 10.3934/proc.2009.2009.349 
[16] 
Fangfang Dong, Yunmei Chen. A fractionalorder derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 2750. doi: 10.3934/ipi.2016.10.27 
[17] 
Wei Zhu, XueCheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems & Imaging, 2013, 7 (4) : 14091432. doi: 10.3934/ipi.2013.7.1409 
[18] 
Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reactiondiffusion system applied to image denoising. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 18391858. doi: 10.3934/dcdsb.2016025 
[19] 
Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems & Imaging, 2014, 8 (1) : 5377. doi: 10.3934/ipi.2014.8.53 
[20] 
Serena Dipierro, Aram Karakhanyan, Enrico Valdinoci. Classification of irregular free boundary points for nondivergence type equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems  A, 2018, 38 (12) : 60736090. doi: 10.3934/dcds.2018262 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]