• Previous Article
    Large BV solutions to Euler equations in the isothermal self-gravitating gases with damping
  • CPAA Home
  • This Issue
  • Next Article
    Three nontrivial solutions for periodic problems with the $p$-Laplacian and a $p$-superlinear nonlinearity
July  2009, 8(4): 1439-1450. doi: 10.3934/cpaa.2009.8.1439

Uniqueness of 2-D compressible vortex sheets

1. 

CNRS, Université Lille 1 and Team Project SIMPAF of INRIA Lille Nord Europe, Laboratoire Paul Painlevé, Bâtiment M2, Cité Scientifique, 59655 VILLENEUVE D'ASCQ CEDEX, France

2. 

Dipartimento di Matematica, Facoltà di Ingegneria, Università di Brescia, Via Valotti, 9, 25133 Brescia, Italy

Received  June 2008 Revised  November 2008 Published  March 2009

We consider compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. Under a supersonic condition that precludes violent instabilities, in previous papers [3, 4] we have studied the linearized stability and proved the local existence of piecewise smooth solutions to the nonlinear problem. This is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. In the present paper we prove that sufficiently smooth solutions are unique.
Citation: Jean-françois Coulombel, Paolo Secchi. Uniqueness of 2-D compressible vortex sheets. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1439-1450. doi: 10.3934/cpaa.2009.8.1439
[1]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419

[2]

Volker Elling. Compressible vortex sheets separating from solid boundaries. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6781-6797. doi: 10.3934/dcds.2016095

[3]

Claude Bardos, E. S. Titi. Loss of smoothness and energy conserving rough weak solutions for the $3d$ Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 185-197. doi: 10.3934/dcdss.2010.3.185

[4]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[5]

Alessandro Morando, Yuri Trakhinin, Paola Trebeschi. On local existence of MHD contact discontinuities. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 289-313. doi: 10.3934/dcdss.2016.9.289

[6]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic & Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[7]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[8]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[9]

Matthias Eller. Loss of derivatives for hyperbolic boundary problems with constant coefficients. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1347-1361. doi: 10.3934/dcdsb.2018154

[10]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[11]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[12]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[13]

Harish S. Bhat, Razvan C. Fetecau. Lagrangian averaging for the 1D compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 979-1000. doi: 10.3934/dcdsb.2006.6.979

[14]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[15]

Paola Goatin, Philippe G. LeFloch. $L^1$ continuous dependence for the Euler equations of compressible fluids dynamics. Communications on Pure & Applied Analysis, 2003, 2 (1) : 107-137. doi: 10.3934/cpaa.2003.2.107

[16]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[17]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[18]

Hualin Zheng. Stability of a superposition of shock waves with contact discontinuities for the Jin-Xin relaxation system. Kinetic & Related Models, 2015, 8 (3) : 559-585. doi: 10.3934/krm.2015.8.559

[19]

Haiyan Yin. The stability of contact discontinuity for compressible planar magnetohydrodynamics. Kinetic & Related Models, 2017, 10 (4) : 1235-1253. doi: 10.3934/krm.2017047

[20]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]