November  2009, 8(6): 1779-1793. doi: 10.3934/cpaa.2009.8.1779

Low dimensional instability for semilinear and quasilinear problems in $\mathbb{R}^N$

1. 

Dipartimento di Matematica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy

2. 

Dipartimento di Matematica, Universitá di Roma Tre, Largo San Leonardo Murialdo, 1, I-00146 Roma, Italy

3. 

Dipartimento di Matematica, Universitá della Calabria, V. P. Bucci, I-87036 Arcavacata di Rende (CS), Italy

Received  June 2008 Revised  April 2009 Published  August 2009

Stability properties for solutions of $-\Delta_m(u)=f(u)$ in $\mathbb{R}^N$ are investigated, where $N\geq 2$ and $m \geq 2$. The aim is to identify a critical dimension $N^\#$ so that every non-constant solution is linearly unstable whenever $2\leq N < N^\#$. For positive, increasing and convex nonlinearities $f(u)$, global bounds on $\frac{f \, f''}{(f')^2}$ allows us to find a dimension $N^\#$, which is optimal for exponential and power nonlinearities. In the radial setting we can deal more generally with $C^1-$nonlinearities and the dimension $N^\#$ we find is still optimal.
Citation: Daniele Castorina, Pierpaolo Esposito, Berardino Sciunzi. Low dimensional instability for semilinear and quasilinear problems in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1779-1793. doi: 10.3934/cpaa.2009.8.1779
[1]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

[2]

George Baravdish, Yuanji Cheng, Olof Svensson, Freddie Åström. Generalizations of $ p $-Laplace operator for image enhancement: Part 2. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3477-3500. doi: 10.3934/cpaa.2020152

[3]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[4]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[5]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[6]

Patrizia Pucci, Raffaella Servadei. Nonexistence for $p$--Laplace equations with singular weights. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1421-1438. doi: 10.3934/cpaa.2010.9.1421

[7]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[8]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[9]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[10]

Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301

[11]

Salvatore A. Marano, Sunra J. N. Mosconi. Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 279-291. doi: 10.3934/dcdss.2018015

[12]

Vladimir Bobkov, Mieko Tanaka. Remarks on minimizers for (p, q)-Laplace equations with two parameters. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1219-1253. doi: 10.3934/cpaa.2018059

[13]

Zheng Zhou. Layered solutions in $R^2$ for a class of $p$-Laplace equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 819-837. doi: 10.3934/cpaa.2010.9.819

[14]

Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024

[15]

Manas Kar, Jenn-Nan Wang. Size estimates for the weighted p-Laplace equation with one measurement. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2011-2024. doi: 10.3934/dcdsb.2020188

[16]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[17]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4255-4281. doi: 10.3934/dcds.2021035

[18]

Benjamin Dodson, Cristian Gavrus. Instability of the soliton for the focusing, mass-critical generalized KdV equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021171

[19]

Paulo Rabelo. Elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2009, 8 (6) : 2013-2035. doi: 10.3934/cpaa.2009.8.2013

[20]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (9)

[Back to Top]