November  2009, 8(6): 1779-1793. doi: 10.3934/cpaa.2009.8.1779

Low dimensional instability for semilinear and quasilinear problems in $\mathbb{R}^N$

1. 

Dipartimento di Matematica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy

2. 

Dipartimento di Matematica, Universitá di Roma Tre, Largo San Leonardo Murialdo, 1, I-00146 Roma, Italy

3. 

Dipartimento di Matematica, Universitá della Calabria, V. P. Bucci, I-87036 Arcavacata di Rende (CS), Italy

Received  June 2008 Revised  April 2009 Published  August 2009

Stability properties for solutions of $-\Delta_m(u)=f(u)$ in $\mathbb{R}^N$ are investigated, where $N\geq 2$ and $m \geq 2$. The aim is to identify a critical dimension $N^\#$ so that every non-constant solution is linearly unstable whenever $2\leq N < N^\#$. For positive, increasing and convex nonlinearities $f(u)$, global bounds on $\frac{f \, f''}{(f')^2}$ allows us to find a dimension $N^\#$, which is optimal for exponential and power nonlinearities. In the radial setting we can deal more generally with $C^1-$nonlinearities and the dimension $N^\#$ we find is still optimal.
Citation: Daniele Castorina, Pierpaolo Esposito, Berardino Sciunzi. Low dimensional instability for semilinear and quasilinear problems in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1779-1793. doi: 10.3934/cpaa.2009.8.1779
[1]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

[2]

George Baravdish, Yuanji Cheng, Olof Svensson, Freddie Åström. Generalizations of $ p $-Laplace operator for image enhancement: Part 2. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3477-3500. doi: 10.3934/cpaa.2020152

[3]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[4]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[5]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[6]

Patrizia Pucci, Raffaella Servadei. Nonexistence for $p$--Laplace equations with singular weights. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1421-1438. doi: 10.3934/cpaa.2010.9.1421

[7]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[8]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[9]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[10]

Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301

[11]

Salvatore A. Marano, Sunra J. N. Mosconi. Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 279-291. doi: 10.3934/dcdss.2018015

[12]

Vladimir Bobkov, Mieko Tanaka. Remarks on minimizers for (p, q)-Laplace equations with two parameters. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1219-1253. doi: 10.3934/cpaa.2018059

[13]

Zheng Zhou. Layered solutions in $R^2$ for a class of $p$-Laplace equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 819-837. doi: 10.3934/cpaa.2010.9.819

[14]

Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024

[15]

Manas Kar, Jenn-Nan Wang. Size estimates for the weighted p-Laplace equation with one measurement. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2011-2024. doi: 10.3934/dcdsb.2020188

[16]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[17]

Paulo Rabelo. Elliptic systems involving critical growth in dimension two. Communications on Pure and Applied Analysis, 2009, 8 (6) : 2013-2035. doi: 10.3934/cpaa.2009.8.2013

[18]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4255-4281. doi: 10.3934/dcds.2021035

[19]

Benjamin Dodson, Cristian Gavrus. Instability of the soliton for the focusing, mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1767-1799. doi: 10.3934/dcds.2021171

[20]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (9)

[Back to Top]