November  2009, 8(6): 1825-1839. doi: 10.3934/cpaa.2009.8.1825

Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback

1. 

Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, United Kingdom

2. 

Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152

Received  October 2008 Revised  February 2009 Published  August 2009

In this work we consider a size-structured cannibalism model with the model ingredients (fertility, growth, and mortality rate) depending on size (ranging over an infinite domain) and on a general function of the standing population (environmental feedback). Our focus is on the asymptotic behavior of the system, in particular on the effect of cannibalism on the long-term dynamics. To this end, we formally linearize the system about steady state and establish conditions in terms of the model ingredients which yield uniform exponential stability of the governing linear semigroup. We also show how the point spectrum of the linearized semigroup generator can be characterized in the special case of a separable attack rate and establish a general instability result. Further spectral analysis allows us to give conditions for asynchronous exponential growth of the linear semigroup.
Citation: József Z. Farkas, Thomas Hagen. Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1825-1839. doi: 10.3934/cpaa.2009.8.1825
[1]

Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289-315. doi: 10.3934/mbe.2005.2.289

[2]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[3]

Yunfei Lv, Yongzhen Pei, Rong Yuan. On a non-linear size-structured population model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3111-3133. doi: 10.3934/dcdsb.2020053

[4]

József Z. Farkas, Thomas Hagen. Asymptotic behavior of size-structured populations via juvenile-adult interaction. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 249-266. doi: 10.3934/dcdsb.2008.9.249

[5]

Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical size-structured population model. Evolution Equations and Control Theory, 2018, 7 (2) : 293-316. doi: 10.3934/eect.2018015

[6]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[7]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[8]

L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203

[9]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[10]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[11]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[12]

Abed Boulouz. A spatially and size-structured population model with unbounded birth process. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022038

[13]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic and Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

[14]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[15]

Horst R. Thieme. Positive perturbation of operator semigroups: growth bounds, essential compactness and asynchronous exponential growth. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 735-764. doi: 10.3934/dcds.1998.4.735

[16]

Fadia Bekkal-Brikci, Khalid Boushaba, Ovide Arino. Nonlinear age structured model with cannibalism. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 201-218. doi: 10.3934/dcdsb.2007.7.201

[17]

Ian H. Dinwoodie. Computational methods for asynchronous basins. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3391-3405. doi: 10.3934/dcdsb.2016103

[18]

Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327

[19]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure and Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[20]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Spectral theory and time asymptotics of size-structured two-phase population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2969-3004. doi: 10.3934/dcdsb.2020048

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (174)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]