
Previous Article
Rigorous derivation of the Landau equation in the weak coupling limit
 CPAA Home
 This Issue

Next Article
Global cylindrical solution to the compressible MHD equations in an exterior domain
Global weak solutions for a viscous liquidgas model with singular pressure law
1.  Centre of Mathematics for Applications (CMA), University of Oslo, 1053 Blindern, NO0316 Oslo, Norway 
2.  Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, NO0316 Oslo, Norway 
[1] 
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for twophase flow with surfactants. Communications on Pure & Applied Analysis, 2019, 18 (1) : 195225. doi: 10.3934/cpaa.2019011 
[2] 
Marianne Korten, Charles N. Moore. Regularity for solutions of the twophase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591600. doi: 10.3934/cpaa.2008.7.591 
[3] 
Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic twophase free boundary problems. Discrete & Continuous Dynamical Systems  A, 2019, 39 (12) : 69616978. doi: 10.3934/dcds.2019239 
[4] 
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible twophase flow in porous media: The case of fields with different rocktypes. Discrete & Continuous Dynamical Systems  B, 2013, 18 (5) : 12171251. doi: 10.3934/dcdsb.2013.18.1217 
[5] 
Theodore Tachim Medjo. A twophase flow model with delays. Discrete & Continuous Dynamical Systems  B, 2017, 22 (9) : 32733294. doi: 10.3934/dcdsb.2017137 
[6] 
Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a twophase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems  S, 2012, 5 (1) : 93113. doi: 10.3934/dcdss.2012.5.93 
[7] 
Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the twophase Stefan problem. Discrete & Continuous Dynamical Systems  A, 2013, 33 (11&12) : 53795405. doi: 10.3934/dcds.2013.33.5379 
[8] 
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquidgas twophase flow model in a bounded domain. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 14111429. doi: 10.3934/dcdsb.2018157 
[9] 
T. Tachim Medjo. Averaging of an homogeneous twophase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems  A, 2012, 32 (10) : 36653690. doi: 10.3934/dcds.2012.32.3665 
[10] 
Theodore TachimMedjo. Optimal control of a twophase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335362. doi: 10.3934/mcrf.2016006 
[11] 
Esther S. Daus, JosipaPina Milišić, Nicola Zamponi. Global existence for a twophase flow model with crossdiffusion. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2019198 
[12] 
Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquidgas twophase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 20212042. doi: 10.3934/cpaa.2015.14.2021 
[13] 
Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquidgas twophase flow model with vacuum in three dimensions. Kinetic & Related Models, 2016, 9 (3) : 429441. doi: 10.3934/krm.2016001 
[14] 
V. S. Manoranjan, HongMing Yin, R. Showalter. On twophase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems  A, 2006, 15 (4) : 11551168. doi: 10.3934/dcds.2006.15.1155 
[15] 
Feng Ma, Mingfang Ni. A twophase method for multidimensional number partitioning problem. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 203206. doi: 10.3934/naco.2013.3.203 
[16] 
Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the twofluid model for twophase incompressible flow. Discrete & Continuous Dynamical Systems  B, 2003, 3 (4) : 541563. doi: 10.3934/dcdsb.2003.3.541 
[17] 
Xavier FernándezReal, Xavier RosOton. On global solutions to semilinear elliptic equations related to the onephase free boundary problem. Discrete & Continuous Dynamical Systems  A, 2019, 39 (12) : 69456959. doi: 10.3934/dcds.2019238 
[18] 
K. Domelevo. Wellposedness of a kinetic model of dispersed twophase flow with pointparticles and stability of travelling waves. Discrete & Continuous Dynamical Systems  B, 2002, 2 (4) : 591607. doi: 10.3934/dcdsb.2002.2.591 
[19] 
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible twophase flow in porous media. Networks & Heterogeneous Media, 2017, 12 (1) : 147171. doi: 10.3934/nhm.2017006 
[20] 
Stefan Berres, Ricardo RuizBaier, Hartmut Schwandt, Elmer M. Tory. An adaptive finitevolume method for a model of twophase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401423. doi: 10.3934/nhm.2011.6.401 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]